Share:


Mathematical modelling driven by two industrial applications: A moving‐boundary approach

    A. Narimanyan Affiliation
    ; A. Muntean Affiliation

Abstract

This note emphasizes the application of the moving‐boundary methodology in the modelling of two processes of particular industrial relevance. The first model explains the application of the Stefan and Signorini type boundary conditions in the modelling of the thermal cutting of metals by a plasma beam, while the second model shows how interface kinetic conditions, employed within the framework of a two‐phase Stefan‐like model, can describe the dynamics of an aggressive reaction front in concrete‐based materials. Our formulations provide a conceptually new approach towards the understanding of the involved physical processes. The connection between the two models is discussed as well. It relies on the presence of non‐equilibrium conditions driving the moving interface. 


First Published Online: 14 Oct 2010

Keyword : plasma cutting, concrete carbonation, moving boundaries, Stefan-Signorini boundary condition, interface kinetics, mathematical modelling

How to Cite
Narimanyan, A., & Muntean, A. (2006). Mathematical modelling driven by two industrial applications: A moving‐boundary approach. Mathematical Modelling and Analysis, 11(3), 295-314. https://doi.org/10.3846/13926292.2006.9637319
Published in Issue
Sep 30, 2006
Abstract Views
477
PDF Downloads
323
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.