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abstract. This paper introduces an automated tool, the stochastic quality-cost optimization (SQCO) system, that hy-
bridizes multi-objective genetic algorithm (MOGA) and Quality Function Deployment (QFD). The system identifies the 
optimal trade-off between a construction owner’s satisfaction and a contractor’s satisfaction. It is important to reconcile 
the project participants’ conflicting interests because the construction owner aims to maximize the quality of construc-
tion while the contractor aims to minimize the cost of construction. MOGA is used to optimize resource allocation when 
owner satisfaction and contractor satisfaction are pursued at the same time under a limited budget. Multi-objective op-
timization is integrated with simulation to effectively deal with the uncertainties of the QFD input and the variability of 
the QFD output. This study is of value to practitioners because SQCO allows for the establishment of a quality plan that 
satisfies all of the multi project participants. The study is also of relevance to researchers in that it allows researchers 
to expeditiously identify an optimal design alternative of construction methods and operations. A test case implemented 
with a curtain-wall unit verifies the usability and validity of the system in practice.
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introduction

A curtain-wall is an exterior cladding system that con-
stitutes a building envelope and affects the building’s 
aesthetic appearance. Particularly, curtain-wall opera-
tion is critical in tall building construction because it 
 accounts for 10 to 15% of the total project cost (Eisele, 
Kloft 2002; Chew et al. 2004; Efstathiades et al. 2007). 
Designing a new system involves in always a tradeoff 
between quality goals and limited budgets (Tsai, Chang 
2004; Fayek et al. 2010). Since curtain-wall design is 
also a techno-economic process, curtain-wall unit cost 
is a critical factor in determining if the design alterna-
tive is acceptable or not. For sure, optimizing the quality 
and cost of curtain-wall design provides an opportunity 
to reduce project cost. However, selecting the optimum 
design alternative is a multi-participant decision-making 
task involving multiple attributes (i.e. several perfor-
mance variables) that need to be considered. 

A design-bid-build (DBB) project proceeds in two 
distinct steps, i.e. selecting a designer to prepare com-
plete and detailed plans and specifications for the project, 
and soliciting bids for construction by using the plans 
and specifications. Therefore, the contractor would have 
no opportunity in the process for developing the design 
when DBB is used; a design-build (DB) project entails 
the award of a single contract to one entity called a de-
sign-build contractor that is responsible for both design 
and construction. It provides collaborative teaming pro-
cess, encourages design innovation by providing more 
opportunities to evaluate design alternatives. Therefore, 
an optimum design alternative can be identified earlier 
and refined throughout, yielding most appropriate design 
to meet the owner’s goals. A project will benefit from 
value engineering (VE) and design innovation resulting 
in substantial cost savings when DB is used. It is well 
accepted that design-build (DB) is advantageous than 
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design-bid-build (DBB) in securing to deliver a project 
within the budget and the estimated construction period 
and to get satisfied with the quality of the project (Ojo 
et al. 2011).

Generally, the project participants (i.e. the construc-
tion owner and the contractor) of a design-build project 
have conflicting interests relative to the quality and the 
cost of a design alternative. The construction owner (or 
the owner’s representative) aims to maximize the qual-
ity of the constructed facility by urging the contractor to 
invest as much as possible in the actual production; the 
contractor aims to maximize the satisfaction of the higher 
management by minimizing the production cost, that is, 
by maximizing company profit. The more the contrac-
tor invests, it is likely that the owner’s satisfaction with 
quality will increase and the contractor’s satisfaction with 
profits will decrease. The conflicting interests between the 
construction owner and the contractor are mostly caused 
by a budget specified in the contract. 

Depending on the planned costs that are allocated to 
the components of a construction product, design alterna-
tives vary. In other words, a set of planned costs assigned 
to the components results in a unique design alternative. 
The optimum design alternative has planned costs that 
maximize the satisfaction of both the construction owner 
and the contractor. An automated system that identifies 
the planned costs of curtain-wall components resulting in 
the optimum trade-off between the quality and the cost 
of a design alternative would facilitate multi-attribute and 
multi-participant decision making. The system identifies 
the trade-off between the conflicting interests pursued 
by the project participants by considering the constraints 
specified in a contract. 

The existing QFD computes the priorities of tech-
nical attributes (TAs), and quantifies the customer satis-
faction by identifying customer requirements (CRs) and 
their importance weights, technical attributes (TAs) and 
their importance weights, and the degrees of relationship 
between CRs and TAs. Quality function deployment is 
accepted as an effective method and to identify the fac-
tors to improve the quality of product and/or service in 
building construction (Tchidi et al. 2012). However, the 
cost dimension is not incorporated into the QFD process 
(King 1987). Integrating the cost dimension into QFD 
may provide an opportunity to maximize customer satis-
faction subject to cost and other organizational constraints 
(Wasserman 1993). In addition, Bode and Fung (1998) 
insist that existing QFD applications are technically one-
sided, because they assume infinite resource availability 
and ignore the fact that an enterprise is usually an eco-
nomic entity that tries to balance the trade-off between 
quality and cost. As such, QFD researchers have so far 
devoted themselves to maximize the external customer’s 
satisfaction only. That is, they fail to consider that the re-
sources needed to deliver a product or service are always 
constrained and that the actual costs allocated to each TA 
are also constrained. In brief, existing QFD researchers 
have not effectively considered the trade-off relationship 

between the quality and the cost under limited resources 
(Wasserman 1993; Bode, Fung 1998; Tang et al. 2002; 
Raharjo et al. 2006). 

This study develops a system named the stochastic 
quality-cost optimization (SQCO) system, which imple-
ments the quality-cost optimization process in order to 
identify the trade-off between the project participants’ 
conflicting interests involved in a design alternative (i.e. 
unitized metal curtain-wall unit (WBDG 1993). The sys-
tem integrates QFD, MOGA, sensitivity analysis, and 
simulation using MOGA Toolbox in MATLAB)). It opti-
mizes the external and internal customers’ satisfaction by 
identifying the trade-off between the quality and cost of a 
design alternative. According to Peach (1997), there are 
external and internal customers. The construction owner 
who receives a constructed facility or project manage-
ment service provided by the contractor is an external 
customer, while the higher management of the construc-
tion company who is responsible for achieving business 
success is an internal customer.

The research contributions are twofold. First, the 
House of Quality (HoQ) which computes the construc-
tion owner’s and the contractor’s satisfactions was mod-
eled. Surveys were administered to construction owners 
(average 11.2 years of experience), architects as the in-
dependent assessors (average 15.6 years of experience), 
and contractors (average 16.7 years of experience) who 
are highly experienced in either curtain-wall design or 
installation on job sites. The Customer Requirements 
(CRs) and their importance weights, the relationship be-
tween Customer Requirements and Technical Attributes 
(TAs) of a curtain-wall unit, and the costs of the compo-
nents of a curtain-wall unit were obtained from the three 
expert groups mentioned previously. The data obtained 
from the surveys were used as the QFD input to create 
the HoQ model. The HoQ model resolves the conflict 
of interest between the construction owner and the con-
tractor who have keen interests in quality and cost, re-
spectively. Second, an automated system that implements 
the HoQ was developed. The system called the stochas-
tic quality-cost optimization (SQCO) system integrates 
QFD and multi-objective genetic algorithm (MOGA). It 
provides an optimization tool that identifies the optimal 
trade-off yielding maximum satisfaction for the construc-
tion owner and the contractor. The system is designed 
to complement the deficiencies of existing QFD appli-
cations as discussed in the previous sections. It consid-
ers the budget constraints, quantifies the satisfaction of 
construction owners and contractors, and identifies the 
optimal trade-off between the satisfaction of owners and 
contractors within the budget constraints specified in a 
contract. It also computes the optimal degree of planned 
achievement of the curtain-wall components, provides 
the optimal cost allocation to the curtain-wall compo-
nents within the allowable budget, and determines the 
optimal solution that balances the conflicting interests by 
integrating QFD and MOGA. In addition, it provides a 
decision-maker with the variance of the project partici-
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pants’ satisfactions when the cost allocations to curtain-
wall components change.

The research was conducted in six steps. First, the 
existing QFD studies that consider the cost aspect were 
investigated. Second, both the Customer Requirements 
(CRs) and Technical Attributes (TAs) involved in a cur-
tain-wall unit were identified in a literature survey. Third, 
the surveys were administered to the three expert groups 
(i.e. construction owners, architects, and contractors) who 
were highly experienced in curtain-wall design; the data 
so collected (i.e. the relative importance weights of the 
customer requirements (di), the relationships between 
customer requirements and technical attributes (Rij), and 
the correlations between the technical attributes (Tij), etc.) 
were used as the QFD input. Fourth, the HoQ model was 
designed using QFD to compute both parties’ satisfac-
tions for selecting the optimal curtain-wall design from 
several alternatives. In addition, an optimization method 
that identifies the optimal trade-off between quality and 
cost was integrated into the model. Fifth, an automated 
system was developed that integrates the HoQ model and 
the optimization method. Finally, the applicability of the 
new system was verified by carrying out a case study 
relative to selecting an optimum curtain-wall design with 
an in-depth discussion. The material in this paper is or-
ganized in the same order.

1. literature survey 
1.1. current state of existing QFd research studies 
that use cost 
Various decision making approaches for design alterna-
tive selection have been reported, i.e. optimization tech-
nique (Kracka et al. 2010; Oh et al. 2011; Suh et al. 2011; 
Cha et al. 2011), multi-criteria decision (Çelik et al. 2010; 
Wang 2011; Kanagaraj, Mahalingam 2011; Lee et al. 
2012), life cycle cost analysis (Wang et al. 2010; Eamon 
et al. 2012), life cycle assessment (Du, Karoumi 2013), 
etc. However, few existing research provides quality-cost 
tradeoff analysis. Wasserman (1993) proposed the first 
QFD model that computes the priorities of Technical At-
tributes (TAs) by allocating a limited budget to respec-
tive TAs by calculating the ratio of Technical Importance 
(wk ) over the Cost Index (ck ). Bode and Fung (1998) 
advanced Wasserman’s model by converting the primary 
costs used by Wasserman (1993) into actual costs using 
the correlation between TAs. These and other researchers 
recommended taking into account the cost dimension by 
integrating an approach that allocates a budget to each 
TA in proportion to the priorities of TAs. However, the 
existing approaches are limited because sometime insuffi-
cient cost is allocated to some of the TAs that have lower 
priority, hence making it difficult to attain design targets. 
In other words, most of the existing QFD models do not 
take resource constraints into account in designing prod-
ucts (Fung et al. 2002). To eliminate the discrepancies 
discussed previously, Fung et al. (2002) suggest a model 
that integrates a resource optimization method into the 

existing QFD using Genetic Algorithm (GA). The model 
searches the alternative cost allocations and selects the 
cost allocation that maximizes customer satisfaction with-
in a limited budget. It introduces the concepts of planned 
attainment (yi) and actual attainment (xi) of TAs, and the 
concept of target attainment (i.e. satisfaction threshold, 
θ0 = 0.45) into QFD to quantify the level of customer 
satisfaction, and to assure that the actual attainments of 
all TAs always achieve more than the specific threshold. 
It searches for the set of planned attainments that maxi-
mizes the customer satisfaction using the following equa-
tion, OS(w*,y) = ∑w*

i *yi). 

1.2. current state of existing QFd research studies in 
optimization
Existing QFD research prioritizes the TAs of a product to 
maximize customer satisfaction. However, a design pro-
cess involves multi-participants (i.e. construction own-
ers and contractors) who have multi and/or conflicting  
objectives (e.g. minimizing cost, maximizing quality, 
minimizing technical difficulty, etc.). The objectives 
exert considerable influence on product quality and the 
possibility of delivering the product within budget. Sev-
eral researchers have proposed optimization methods that 
reconcile these objectives originating from the project 
environment that surrounds the construction owner and 
the contractor who are external and internal customers, 
respectively. They claimed that it would be desirable to 
integrate reconciled objectives into designing QFD.

Wasserman (1993) introduced linear programming 
into QFD to find the optimal budget allocation. Tang 
et al. (2002) and Fung et al. (2002) integrated Genetic 
Algorithm (GA) into QFD to identify the optimal budget 
allocation for achieving maximum customer satisfaction 
and enterprise satisfaction. These are multi-objective op-
timization models that aim to satisfy both the customer 
and the enterprise by maximizing the quality performance 
and by minimizing the cost, respectively. As discussed 
previously, several researchers have integrated the avail-
ability of enterprise resources into QFD. However, none 
of the existing models integrate multi-objective optimiza-
tion algorithm (Zitzler et al. 2011), sensitivity analysis, 
and simulation (Law, Kelton 2000) into QFD in a soft-
ware application. A new system called SQCO, which is 
a cost-based QFD, is presented in this study for a viable 
solution to these issues. 

2. Stochastic quality-cost optimization system

Detailed explanations of QFD that accounts for the cost 
dimension are provided in other publications (e.g. Was-
serman 1993; Bode, Fung 1998; Tang et al. 2002). First, 
this section presents the detailed modelling steps relative 
to formulating the HoQ which computes the construc-
tion owner’s satisfaction and the contractor’s satisfaction 
involved in curtain-wall design alternatives. Second, the 
detailed steps relative to designing survey questionnaires 
and collecting data is presented. Third, the mathematical 
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formulation relative to integrating MOGA and simulation 
with the HoQ is described. 

2.1. integrating the cost dimension into hoQ
This section introduces the detailed steps by which the 
cost dimension is integrated into the HoQ for selecting an 
optimal curtain-wall design alternative. The cost-based 
HoQ defines the construction owner’s requirements and 
engineering components (i.e. curtain-wall components) 
using the data obtained from the survey respondents. 
The cost-based HoQ differs from existing HoQ models 
(Wasserman 1993; Bode, Fung 1998; Tang et al. 2002) 
in that it facilitates collecting and processing QFD input 
data, encourages the utilization of the positive or nega-
tive correlations between engineering components (i.e. 
the curtain-wall components) defined in the roof of the 
HoQ, computes the construction owner’s satisfaction and 
the contractor’s satisfaction, and presents information 
relative to achievements (i.e. planned achievement and 
actual achievement) and cost (i.e. the primary cost, the 
actual cost, and the planned cost) in the HoQ. Figure 1  

shows the cost-based HoQ that is designed to select  
an optimal curtain-wall design alternative. It contains 
information about owner requirements, the technical  
attributes of a curtain-wall unit, the strength of their in-
terrelationship, and the correlation between the technical 
attributes. The definition of QFD input variables and the 
data processing to obtain QFD output data are presented 
below in detail:

 – Column ①: It is the construction owner require-
ments (ORs) for a metal curtain-wall used in a tall 
building. The ten ORs listed in Table 1 were adapted 
from the document entitled “Building Envelope De-
sign Guide – Curtain Walls” (WBDG 1993) which 
provides with up-to-date information on a wide 
range of building-related guidance, criteria and 
technology. The ten dimensions (i.e. ‘thermal per-
formance’, ‘moisture protection’, ‘visual’, ‘sound’, 
‘safety’, ‘maintenance access’, ‘health and indoor 
air quality’, ‘durability and service life expectancy’, 
‘maintainability and reparability’ , and ‘sustainabil-
ity’) are described in Table 1.

Fig. 1. The HoQ integrating cost dimension
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 – Column ②: This column includes the relative impor-
tance weights (di) of the ten owner requirements(ORs). 
They were reported by construction owners in a ques-
tionnaire survey on a 9-point Likert scale where 1 is 
‘not important’, and 9 is ‘extremely important’. 

 – Row ③: This row includes the technical attributes 
(TAs) of the twelve components of a curtain-wall 
unit which were adapted from the standard drawings 
obtained from ‘Building Envelope Design Guide – 
Curtain Walls’ (WBDG 1993). A curtain-wall unit 
that meets the construction owner’s requirements 
consists of these engineering components which in-
cludes ‘aluminum frames’, ‘exterior cover’, ‘anchor 
accessory’, ‘fire safe insulation’, ‘gaskets’, ‘vision 
glass’, ‘spandrel glass’, ‘seals’, ‘splice sleeve’, ‘in-
dex clip’, ‘glazing setting blocks’, and ‘back pan’. 
They were listed in the same order in the HoQ. 

 – Matrix ④: This matrix represents the normalized 
strength of the relationship (R*

ij) between the ten 
owner requirements (ORs: column ①) and the 
twelve curtain-wall components (TAs: row ③). 
This information was obtained from architects who 
have extensive experience in curtain-wall projects 
by means of a survey instrument on a 9-point Lik-
ert scale where 1 is ‘no relation’, and 9 is ‘perfect 
(one-on-one) relation’. The information represents 
the contribution of a curtain-wall component to sat-
isfy an individual owner requirement.

 – Matrix ⑤: This matrix represents the correlation (Tjk) 
between the jth and kth curtain-wall components (TAs: 
row ③). If there is no dependence between them, Tjk = 0;  
otherwise it represents the degree of dependence. This 
information was obtained from specialty contractors 
who have extensive experience in engineering, manu-
facturing, delivering and installing curtain-walls. The 
information is also obtained by means of a survey in-
strument on a 5-point Likert scale, where in the case 
of a positive correlation, 1 is ‘very little correlation’, 
and 5 is ‘very high correlation’; conversely, in the case 
of a negative correlation, –1 is ‘very little correlation’, 
and –5 is ‘very high correlation’. 

 – Row ⑥: This row represents the normalized impor-
tance weights (wj) of curtain-wall components. They 
represent the priority of each curtain-wall component 
calculated by using the relative importance weights 
of the owner requirements (di) and the strength of 
the relationship between the construction owner re-
quirements and the curtain-wall components (Rij) as 
shown in Eqn (1): 

  (1)

where: R*
ij is obtained by normalizing the Rij matrix. Rij 

represents the degree to which the jth curtain-wall com-
ponent (TA) contributes to satisfy the ith owner require-
ment (CR).

 – Row ⑦: This row includes the actual importance 
(w*

j) of curtain-wall components. This is calculated 
using the correlation between the curtain-wall com-
ponents (Tij) available in Matrix ⑤ and the normal-
ized importance weights of curtain-wall components 
(wj) available in row ⑥ according to Eqn (2). Ob-
viously, the actual importance (w*

j) of curtain-wall 
components are calculated by taking into account 
the correlations between TAs:

  (2)

 – Row ⑧: This row represents the degree of the 
planned achievement (yj) of curtain-wall compo-
nents. This is defined as the design targets to be  
fulfilled on the assumption that there are no depend-
encies among curtain-wall components. The twelve 
curtain-wall components in Row ③ have different 
degrees of planned achievement (yj) which are the in-
puts of the two objective functions relative to owner  
satisfaction (OS) and contractor satisfaction (CS). 
Given the two sets of information, i.e. the QFD in-
put data (di , R*

ij, Tjk, cj) obtained from expert groups 
and the project specific constraints (e.g. allowable 
budget, the degree of the actual achievement), the 

Table 1. Construction owner requirements for curtain-wall design (adapted from WBDG 1993)

Owner needs Definitions
Thermal performance The thermal efficiency of a building relative to protecting thermal conduction and solar radiation.
Moisture protection The performance to protect water penetration and/or condensation.
Visual The performance to service day lighting and/or aesthetics.
Sound The performance to stop air leakage.
Safety The performance to slow fire and combustion gases between floors. 
Maintenance access The performance to stabilize swing stage rigs used by maintenance and cleaning crews.
Health & indoor air 
quality

The performance to protect air and water which can contribute to Indoor Air Quality (IAQ) problems 
by supplying liquid water and condensation moisture for mold growth. 

Durability & service 
life expectancy

The performance to endure issues resulted in glazing problem, gaskets and sealants failure and to 
maintain the system with a long usable life in economics.

Maintainability &  
repair-ability

The ease and speed with which the system can be successfully repaired and/or restored to operational 
status after the service life of each component (perimeter sealants, anodized frames) passes.

Sustainability The easiness to recycle the material (aluminum frame, glass) in the future.
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optimal degrees of the planned achievement which 
maximizes the two objective functions are computed 
using MOGA. A discussion of the primary cost (cj) 
of curtain-wall components is presented in Row ⑩. 
Detailed explanations of the optimization system em-
ploying MOGA is also presented in a later section.

 – Row ⑨: The information in Row ⑨ represents the 
degree of the actual achievement (xj). xj are calculat-
ed by using the degree of planned achievement (yj) 
of curtain-wall components obtained by employing 
MOGA as presented in Row ⑧ and the correlation 
between the curtain-wall components (Tjk) available 
in Matrix ⑤, the roof of HoQ, according to Eqn (3): 

  (3)

 – The degree of the actual achievement (xj) repre-
sents the cost effect attributed to the dependency 
relationships between the curtain-wall components 
(Tjk), when enough costs are allocated to curtain-
wall components in proportion to the degree of 
the planned achievement (yj) of the components. 
For example, given that T12, T13, y1, y2, and y3 are 
0.05, –0.01, 0.7, 0.5, and 0.8, respectively, x1 is cal-
culated as follows; x1 = 1*y1 + T12 * y2 + T13 *  
y3 = 1*0.7 + 0.05 * 0.5 + (–0.01)* 0.8 = 0.717. 
Originally, the degree of the planned achievement 
of component 1(y1) is 0.7. However, the degree of 
the actual achievement of component 1(x1) increases 
to 0.717 due to the correlation between the curtain-
wall components. In this case, the degrees of the 
actual achievement are greater than the degrees of 
the planned achievement due to the correlation be-
tween the curtain-wall components, even though the 
degrees of the planned achievement are set lower 
than the design target (i.e. the degrees of the actual 
achievement) in the initial stage of QFD planning. 
The degrees of the actual achievement are used as 
a constraint of this optimization problem using GA.

 – Row ⑩: This row represents the primary cost (cj) 
of curtain-wall components which is required to de-
liver each of the components independently, assum-
ing that there are no technical dependencies among 
curtain-wall components. Given the standard draw-
ings of a curtain-wall provided by WBDG (1993), 
the cost information was collected from experts in 
curtain-wall design and cost estimation. 

 – Cell ⑪: This cell represents the sum (c) of the pri-
mary costs of curtain-wall components (cj). It is 
the total cost to be committed to a curtain-wall unit 
when the dependencies among the curtain-wall com-
ponents are not considered.

 – Row ⑫: This row represents the actual costs (c*
j) 

of curtain-wall components which are adjusted 
from the primary costs of curtain-wall components. 
A specific curtain-wall component has neighbour 
component(s) which may have technical depend-

encies with the specific component. The neighbour 
component(s) contributes to achieve the design tar-
get of the specific curtain-wall component due to 
the technical dependency. The actual costs are cal-
culated using the achievement degrees of neighbour 
components involved in the specific component and 
the technical dependency, according to Eqn (4):

  (4)

 – The actual costs are used to calculate the planned 
cost (refer to Row ⑭) using the degrees of the ac-
tual achievement (xj) in Row ⑨ which represent the 
amount of influence attributed to the neighbour com-
ponents. For example, given that [c1, T12, T13, y2, and 
y3] are [100, 0.05, –0.01, 0.5, and 0.8], respectively, 
the actual cost of component 1 (c*

1 ) is calculated 
as: c1*[1– (T12*y2+T13*y3)] = 100*[1 – (0.05*0.5 + 
(–0.01)*0.8)] = $98.3. c*

1 is less than the primary 
cost of component 1 (c1) of $100. The cost saving of 
$1.7 (=$100–$98.3) is contributed by the technical 
dependency among the neighbouring components.

 – Cell ⑬: This cell represents the sum total (c*) of 
the actual costs of a curtain-wall component (c*

j). It 
is the total cost of a curtain-wall unit when the de-
pendencies among the curtain-wall components are 
considered. It is obtained by adjusting the primary 
costs of components according to the technical de-
pendencies among the curtain-wall components. 

 – Row ⑭: This row represents the planned costs 
(Cj(xj)) calculated using the actual costs (Eqn (4)) 
and the degrees of the actual achievement (Eqn (3)) 
according to Eqn (5). These are the costs demanded 
to produce the components of a curtain-wall unit: 

  (5)

 – Cell ⑮: This cell represents the sum total of planned 
costs of all components (C) which is the unit cost of 
a curtain-wall. 

 – Cell ⑯: This cell represents the owner satisfaction 
(OS) which is obtained from the objective function 
formulated using the normalized importance weight 
of curtain-wall components (wj) and the degree of 
the actual achievement (xj) using Eqn (6): 

  (6)

 – Cell ⑰: This cell represents the contractor sat-
isfaction (CS) which is obtained from the objec-
tive function formulated using the unit cost of a 
curtain-wall given in Cell ⑮ as shown in Eqn (7). 
CS is inversely proportional to the unit cost (C) in  
Cell ⑮. ontractor satisfaction decreases as net prof-
it decreases; it similarly decreases as unit cost (C) 
increases. OS is inversely proportional to CS, and 
vice versa: 
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 , (7)

where: C is the total planned cost; C0 is the minimum 
planned cost; B is the allowable budget; α0 is the satisfac-
tion with total budget committed; and r is the coefficient 
of curve shape.

2.2. the design of survey questionnaires
The project participants who have conflicting interests in 
identifying an optimal curtain-wall design alternative in 
D/B construction are identified based on their role, re-
sponsibilities, needs and expectations as: (1) construction 
owners; (2) architects; and (3) contractors, three sets of 
questionnaires were therefore prepared and administered 
to these three populations.

A survey questionnaire was administered to all 63 
construction owners and/or the owner’s representative of 
D/B construction listed in the database of the Seoul met-
ropolitan government. The rate of response was 33.33%. 
Then, the weights were normalized using the mean value 
of the survey data. The questionnaire sought information 
about the following:

 – The demographics of construction owners: this in-
formation was expressed in terms of organization 
type (all were involved in D/B projects), years of ex-
perience in the industry (on the average 11.2 years), 
job title of the respondents (higher executives such 
as President, Vice President, and Director of Public 
Works), and project type (mostly building construc-
tion).

 – The relative importance weights of the ten owner 
requirements: this information was sought for use 
in House of Quality calculations. The values as-
signed by the owners were later normalized (refer to  
Matrix 1 in later section). The ten owner require-
ments (ORs) are defined in Table 1. These require-
ments were adapted from the factors documented in 
WBDG’s (1993).
A survey questionnaire was administered to all 140 

architects who had experience with D/B construction and 
registered in the database of the Korean Institute of Regis-
tered Architects (KIRA). The rate of response was 19.29%. 
The questionnaire sought information about the following:

 – The demographics of architects: this information 
was expressed in terms of years of experience in the 
industry (average 15.6 years of experience), job title 
of the respondents (presidents and vice presidents), 
and project type (mostly building construction).

 – The strength of the relationship between the ten own-
er requirements (ORs) and the twelve curtain-wall 
components (TAs): this information was obtained 
from architects who have extensive experience  
in curtain-wall projects by means of a survey in-

strument on a 9-point Likert scale where 1 is ‘no 
relation’, and 9 is ‘perfect (one-on-one) relation’. 
The values assigned by the architects were normal-
ized (refer to Matrix 2 in later section). The infor-
mation represents the contribution of a curtain-wall 
component to satisfy an individual owner require-
ment. 
A survey questionnaire was administered to all 128 

curtain-wall specialty contractors who are highly experi-
enced in either curtain-wall design or installation on job 
sites and registered in the database of the Korean Special-
ty Contractor Association (KOSCA). The rate of response 
was 17.19%. The questionnaire sought information about 
the following:

 – The demographics of specialty contractors: this  
information was expressed in terms of years of ex-
perience in the industry (average 16.7 years of expe-
rience), and job title of the respondents (presidents 
and vice presidents).

 – The correlation between the curtain-wall components 
(TAs): This information was obtained from specialty 
contractors who have extensive experience in engi-
neering, manufacturing, delivering and installing cur-
tain-walls. It is also obtained by means of a survey 
instrument on a 5-point Likert scale, where in the 
case of a positive correlation, 1 is ‘very little corre-
lation’, and 5 is ‘very high correlation’; conversely, 
in the case of a negative correlation, –1 is ‘very little 
correlation’, and –5 is ‘very high correlation’. The 
values assigned by the specialty contractors were 
normalized (refer to Matrix 3 in later section).
An estimate was administered to a professional es-

timator who has extensive experience in estimating cur-
tain-walls. This type of respondent is hard to come by, 
as professional estimator having extensive experience in 
estimating curtain-walls is a rare occurrence. This per-
son was the representative of one of the largest curtain-
walls specialty contractor in Korea. This company has 
been in existence since 1975, has specialized expertise 
in design, engineering and construction of curtain-wall, 
has certified with ISO 9001 and ISO 14001, and has op-
erated nationally and internationally in Korea and other 
countries. The person who engaged in estimating was 
fully familiar with D/B projects. The information ob-
tained included the cost estimates of twelve curtain-wall 
components. Given the standard drawings of a curtain-
wall provided by WBDG, the cost that is required to 
deliver each of the components independently was col-
lected from the expert. It was assumed that there are 
no technical dependencies among curtain-wall compo-
nents. The costs allocated by the expert were assigned 
to Matrix 4 which is presented in later section.

2.3. integrating multi-objective genetic algorithm 
into hoQ
Genetic Algorithm (GA) is inspired by the mechanics 
of evolutions and is an optimization method that assists  
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decision makers to identify optimal or near-optimal so-
lutions for problems with a large search space. It adopts 
the concept of the survival of the fittest and structures 
the exchange of genetic materials among populations 
over successive generations as a basic mechanism for 
the search process (Goldberg 1989). Given several con-
flicting objective functions, multi-objective GA finds 
a Pareto optimal solution. The Pareto optimal solution 
is accepted as the most dominant and the best solution 
of all the non-dominant solutions produced by the con-
flicting objective functions (El-Rayes, Kandin 2005;  
Cha et al. 2011). 

The multi-objective genetic algorithm (MOGA) is 
integrated into the QFD model to search for the Pareto 
optimal or near optimal trade-off between quality and 
cost in this study. The algorithm sorts the individuals in 
descending order according to the Pareto optimal rank 
and selects the individual at the top of the list. If mul-
tiple individuals are at the top of the list, the crowding 
distances are computed. The individual having the low-
est crowding distance is selected as a parent to generate 
a child in the next generation (Deb 1999, 2001). The 
project participants (i.e. the construction owners and the 
contractors) have conflicting interests in selecting the 
optimal design alternative for a curtain-wall unit. The 
construction owner expects to maximize the quality of 
the curtain-wall unit by encouraging the contractor to 
use costly materials/processes, while the contractor ex-
pects to minimize the cost of the curtain-wall unit by 
seeking less costly solutions from the specialty contrac-
tor. Therefore, selecting the optimal design alternative 
is equivalent to finding the optimal balance between 
owner satisfaction (OS) and contractor satisfaction (CS) 
relative to the quality and the cost of the curtain-wall 
unit by picking the most appropriate combination of 
planned achievement of curtain-wall components.

Given a set of planned achievements of curtain-
wall components (refer to row ⑧ in Fig. 1) as a de-
sign target, SQCO automatically calculates QFD outputs 
such as actual achievement, planned cost, construction 
owner satisfaction, and contractor satisfaction. SQCO 
has optimization capability to address the trade-off 
between the conflicting interests of the project par-
ticipants. The system operates in three steps, namely:  
(1) defining the objective functions, (2) defining the con-
straints, and (3) implementing multi-objective genetic 
algorithm.

The first step, i.e. defining the objective functions, 
involves formulating the two objective functions (i.e. OS 
and CS) shown in Eqns (6) and (7). OS and CS are com-
puted using decision variables such as actual achievement 
and planned cost, which are calculated using the planned 
achievement (yj). The system searches the optimal cur-
tain-wall design alternative that maximizes the two ob-
jective functions simultaneously. Selecting the optimal 
curtain-wall design alternative is equivalent to searching 
the optimal chromosome of planned achievements (yj) 

that maximizes the two objective functions (i.e. Eqns (6) 
and (7)) simultaneously.

The second step, i.e. defining the constraints, in-
volves identifying and formulating the constraints that are 
specified in the contract. The constraints are project spe-
cific because: (1) the actual achievement of curtain-wall 
components should be obtained over a specific satisfac-
tion threshold (i.e. X%; Tang et al. 2002). X varies within 
the [0,100] range; (2) the budget of a curtain-wall unit is 
constrained to a certain value (e.g. $600/unit) specified in 
the contract; (3) the planned costs of curtain-wall com-
ponents should be positive values; and (4) the internal 
QFD variable should also be constrained. Generally, most 
studies that make use of Genetic Algorithms (GA) limit 
only the range of the decision variables. However, SQCO 
produces a set of internal QFD data (i.e. actual achieve-
ment, planned costs, etc.) during QFD computation. The 
internal QFD data are returned to the QFD to calculate 
QFD outputs (i.e. OS, CS, the total planned cost (C), 
etc.). Not only the decision variables, but also the inter-
nal QFD variables should be constrained. It is worth not-
ing that QFD may reach unrealistic solutions (e.g. nega-
tive planned cost, planned achievement exceeding 100%, 
etc.) if the ranges of the internal QFD variables are not 
appropriately constrained. SQCO introduces the concept 
of penalty into the fitness functions of GA to remove un-
realistic solutions from GA experiments. By setting the 
range of the internal QFD variables, SQCO ensures that 
the search for the optimum solution is secured. If the in-
ternal QFD data do not satisfy the constraints initially set 
by the user, the corresponding individual who does not 
satisfy the constraints would be excluded from the list 
of the fittest individuals because this individual’s fitness 
value would be reduced by SQCO. Computing owner sat-
isfaction (OS), which is one of the objective functions in 
the GA experiment, the original fitness value is reduced 
by subtracting the penalty as shown in Eqn (8):

 , (8) 

where: OS – construction owner’s satisfaction; yj – the 
degree of the planned achievement; w*

j – actual technical 
importance; Cj – planned cost; P – penalty.

If an internal QFD variable does not satisfy the con-
straints initially set (i.e. the degree of the actual achievement  
(xj) should be within the [0,1] range and the planned 
cost (Cj) should be a positive value), the individual’s fit-
ness value would be reduced by an amount equal to pen-
alty (P) as shown in Eqn (8) when computing the owner’s 
satisfaction (OS). In this way, the probability that the indi-
vidual is selected in the next generation would be reduced.



Journal of Civil Engineering and Management, 2015, 21(4): 407–422 415

The third step, i.e. implementing the multi- 
objective genetic algorithm (MOGA), involves apply-
ing MOGA to select the optimal curtain-wall design 
alternative. This step operates in a successive series of 
four modes, namely: (1) importing the QFD input and 
initializing GA options; (2) evaluating the fitness of the  
construction owner’s satisfaction and the contractor’s 
satisfaction; (3) generating populations and identifying 
the fittest individual over successive generations; and  
(4) analysing the QFD output. The method described be-
low was coded into an automated system by using MAT-
LAB programming. The algorithm of SQCO is presented 
in Figure 2 with detailed descriptions as follows.

The first mode, i.e. importing the QFD input and ini-
tializing GA options, involves importing the QFD input 
from a database that contains data collected from expert 
groups using a survey questionnaire; it also involves iden-
tifying the optimal set of GA options. The mutation rate 
increases by an interval of 0.1 as expressed in Step ①  
while holding the crossover rate, and vice versa. GA re-
peats Steps ② to ⑭ for each set of the mutation/crosso-
ver rate combinations. The best set of crossover and mu-
tation rates is identified from the experiments. Actually, 
a very common mode of the GA experiment is to make a 
single GA run of somewhat arbitrary options (i.e. initial 
population, mutation and crossover rates, stopping rules, 
etc.) and then to treat the resulting GA outputs as the 
‘true’ characteristic of the model. Because GA typically 
relies on random number generation in the execution of 
the algorithm based on the initial options, the correspond-
ing GA outputs are only particular realizations of random 
variables that may be a local solution. Therefore, it is not 
appropriate to assume that the solution obtained from a 
single GA run is the ‘true’ optimal solution. The QFD 
input including construction owners’ requirements, their 
relative importance weights, the relationships between 
construction owners’ requirements and curtain-wall com-
ponents, the correlations between the components, and 
the set of primary costs (or unit costs) of the compo-
nents are imported from a database that contains data col-
lected from expert groups using a survey questionnaire 
in Step ②. The GA options (i.e. number of generations, 
population size, crossover rate, mutation rate, and stop-
ping rules, etc) are specified in Step ③ for initializing 
the GA experiments. The number of decision variables 
(i.e. the length of a chromosome) is 12, because the 
planned achievement corresponds to the 12 components  
of a curtain-wall unit. Because the GA options con-
tribute to the reliability of the GA output, the optimal 
number of generations and the population size ensure 
the quality of the solution based upon the length of a 
chromosome (El-Rayes, Kandin 2005). The mutation and 
crossover rates were also identified using sensitivity anal-
ysis. The GA stopping rule was set using the maximum  
number of generations and the cumulative changes in 
the fitness value over generations. The GA stops if the 
number of iterations reaches the maximum number of 
generations or the minimum tolerance. If the difference 

of the fitness values obtained from previous and current 
best solutions is less than the minimum tolerance (i.e. the 
default value was set at 1.0e–3 in this study), the algo-
rithm stops. The random initial population was generated 
at the first generation in Step ④. The solutions of the 
initial population represent the optimal set of the planned 
achievement relative to the 12 curtain-wall components. 
The initial range of the solutions was set at [0,1], because 
the planned achievement of the 12 curtain-wall compo-
nents are normalized within [0,1] values.

The second mode, i.e. evaluating the fitness of the 
construction owner’s satisfaction and the contractor’s 
satisfaction, starts by selecting feasible solutions from 
the solutions obtained in the previous mode to search an 
optimal set of planned achievements (yj) and to repro-
duce enhanced solutions. A feasible solution (Sn) is se-
lected from the initial population considered in Step ⑤. 
Owner satisfaction (OS) and contractor satisfaction (CS) 
for a feasible solution (Sn) in a generation are calculated 
using the two objective functions shown in Eqns (11)  
and (12), respectively in Step ⑥. They are calculated 
using the sets of planned achievements, which are QFD 
input variables. SQCO utilizes a facility function called 
“GAMULTIOBJ” in MATLAB to search for an optimal 
set of planned achievements that maximize the two ob-
jective functions (i.e. OS and CS) simultaneously. GA 
identifies an individual that has the smallest value of the 
fitness function as the fittest in the generation. The fitness 
value of an individual is the value of the fitness function 
for that individual. But SQCO maximizes two objective 
functions. Therefore, the maximization problem was con-
verted to a minimization problem by changing the origi-
nal objective function (or fitness function), f(x) to –f(x). 
The fitness value of an individual is recalculated in Step 
⑦ only if an internal QFD variable is not free from the 
constraints that are involved in the actual attainment (xi) 
obtained from QFD computation using the feasible so-
lution selected in Step ⑤, and the planned cost (Cj) of 
curtain-wall component as shown in Figure 1. The fitness 
determines the likelihood of the survival and reproduc-
tion of each solution in successive generations at Step ⑧. 
The algorithm checks if the current number of individuals 
is greater than the number of individuals in the popula-
tion set at the outset in Step ③. This step repeats from 
⑤ to ⑧ as many times as the number of the individuals 
in the population, based on string size as recommended 
by El-Rayes and Kandil (2005).

The third mode, i.e. generating populations and 
identifying the fittest individual over successive gen-
erations, starts by calculating the Pareto optimal rank 
and crowding distance of each solution (sn) in the par-
ent population (Pg) in Step ⑩. The Pareto rank is de-
termined by ranking the fitness values of solutions in 
descending order according to how much a solution 
dominates other feasible solutions. A solution is identi-
fied as dominant when the solution has the least fitness 
value compared to other solutions. The fittest individual 
is the individual that maximizes the quality and mini-
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mizes the cost simultaneously. The crowding distances  
among solutions represent the closeness of neighbor  
solutions to the solution under consideration. They 
represent the degree to which the solutions are scat-
tered over a Pareto optimal front. When the crowding 
distance of a solution becomes large, the obtained so-
lutions are widely spread over a Pareto optimal front 
and the diversity of solutions is secured (Deb 2001). 
Using the Pareto rank and crowding distance, the al-
gorithm always selects the fittest solutions from the 
parent population (Sg) and reuses them to generate 
child populations (Sg+1) using the dominant solutions  

obtained from the parent population (Sg) in Step ⑪. The al-
gorithm applies selection, crossover, and mutation operators  
to the dominant solutions. The selection operation choos-
es the individuals that have higher optimal rank and 
wider crowing distance for reproduction. The crossover 
operation crosses each pair of the selected individuals 
at a randomly determined point. It reproduces two new 
children by swapping the genes (i.e. variables) coded 
in the chromosome (i.e. string) at this point. The muta-
tion operation randomly changes the value of one of the 
variables in the string to induce innovation and to pre-
vent premature convergence to local optima (Goldberg  

Fig. 2. Curtain-wall Quality-Cost optimization algorithm
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1989). The system checks if the GA experiment passes 
the maturity test in Step ⑫. It checks if the stopping 
rules set at Step ③ are met. If any of the stopping rules 
are met, the algorithm proceeds to Step ⑬; otherwise 
it returns to Step ④ and continues implementing the 
algorithm.

The fourth mode, i.e. analysing the QFD output, 
makes use of the best set of crossover and mutation rates 
identified in the sensitivity analysis conducted in Step 
① in order to find the optimum solutions converged, i.e. 
the optimal sets of planned achievements specified in 
Step ⑬. In addition, construction owner satisfaction, con-
tractor satisfaction, planned costs of curtain-wall compo-
nents, and total cost are calculated and saved in the com-
puter’s memory. Then, the GA output obtained from this 
experiment is accepted as the optimal global solution. The 
GA output calculated in Step ⑬ is plotted and the optimal 
quality-cost trade-off point is identified in Step ⑭.

3. test case 

An optimal curtain-wall design alternative was selected 
in this case study in order to demonstrate the procedure 

described in the preceding section and to illustrate the 
potential of SQCO in the context of multi participant 
decision-making. This section illustrates how the system 
identifies the optimal trade-off between the satisfaction 
of the construction owner and of the contractor simul-
taneously, and how it selects an optimal design alterna-
tive that allocates the allowable budget to the curtain-wall 
components in a way that optimizes the quality and cost 
of the design alternative. An executable of SQCO can be 
obtained upon request to the author.

To establish a HoQ, QFD input (i.e. the relative im-
portance weights of the construction owner needs (refer 
to Matrix 1), the relationships between owner needs and 
curtain-wall components (refer to Matrix 2), the correla-
tions between curtain-wall components (refer to Matrix 
3), and the primary costs of curtain-wall components (re-
fer to Matrix 4), etc.) were collected by means of a survey 
administered to construction owners (information in Ma-
trix 1), architects (information in Matrix 2), curtain-wall 
design experts (information in Matrix 3), and contractors 
(information in Matrix 4). 

0.09 0.09 0.02 0.09 0.09 0.12 0.02 0.09 0.12 0.09 0.07 0.09 

    

0.07 0.02 0.02 0.22 0.22 0.00 0.07 0.12 0.07 0.00 0.07 0.10 
0.12 0.07 0.07 0.07 0.12 0.07 0.10 0.10 0.10 0.12 0.02 0.02 
0.08 0.14 0.06 0.06 0.14 0.08 0.11 0.03 0.08 0.00 0.11 0.11 
0.15 0.12 0.03 0.03 0.03 0.03 0.12 0.15 0.09 0.09 0.15 0.03 
0.03 0.14 0.03 0.03 0.03 0.08 0.11 0.08 0.11 0.11 0.11 0.14 
0.14 0.08 0.03 0.08 0.11 0.14 0.06 0.08 0.08 0.06 0.03 0.11 
0.08 0.08 0.08 0.13 0.03 0.11 0.11 0.13 0.11 0.03 0.05 0.08 
0.11 0.11 0.04 0.11 0.04 0.11 0.15 0.04 0.00 0.00 0.19 0.11 
0.10 0.17 0.17 0.10 0.03 0.10 0.10 0.10 0.10 0.00 0.00 0.03 

1.00 0.05 –0.17 0.17 0.17 0.00 0.20 0.00 0.00 0.20 0.20 0.00 
0.05 1.00 0.00 0.00 0.00 0.10 0.00 0.03 0.00 0.10 0.00 0.03 

 

–0.17 0.00 1.00 0.17 –0.05 0.10 0.00 0.03 –0.02 0.03 0.10 0.00 
0.17 0.00 0.17 1.00 0.02 0.02 –0.03 0.01 0.02 0.01 0.02 0.00 
0.17 0.00 –0.05 0.02 1.00 0.10 0.03 0.03 0.00 0.10 –0.05 0.05 
0.00 0.10 0.10 0.02 0.10 1.00 0.01 0.02 0.03 0.01 0.01 0.03 
0.20 0.00 0.00 –0.03 0.03 0.01 1.00 0.17 0.17 0.00 0.02 0.02 
0.00 0.03 0.03 0.01 0.03 0.02 0.17 1.00 0.02 0.01 –0.03 0.03 
0.00 0.00 –0.02 0.02 0.00 0.03 0.17 0.02 1.00 0.01 0.02 0.03 
0.20 0.10 0.03 0.01 0.10 0.01 0.00 0.01 0.01 1.00 0.01 0.01 
0.20 0.00 0.10 0.02 –0.05 0.01 0.02 –0.03 0.02 0.01 1.00 0.01 
0.00 0.03 0.00 0.00 0.05 0.03 0.02 0.03 0.03 0.01 0.01 1.00 

Matrix 1:
The relative importance weights of the construction owner’s needs (wi) = [0.17 0.16 0.13 0.13 0.14 0.08 0.08 

0.05 0.05 0.01].
Matrix 2:
The relationships between owner needs and curtain-wall components (Rij) =

Matrix 3:
The correlations between the curtain-wall components (Tjk) =

Matrix 4:
The primary costs of curtain-wall components (Cj) = [100  40  50  30  60  90  80  30  50  20  30  70].
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Several constraints are set up as follows. The actu-
al achievement (xj) of a component should exceed 45%, 
the budget of a curtain-wall unit is limited to $500/unit 
given that the total primary costs are identified as $650 
in this test case, the minimum contractor satisfaction (α0) 
should be 45% when the budget is expended, the mini-
mum budget of a curtain-wall unit is $300, and the co-
efficient of the contractor satisfaction function (r) is 1.  
The project specific constraints were set by the system user.

Assuming that GA computes to two decimal places, 
the number of combinations of the planned achievements, 
that is, the possible number of planned costs of curtain-
wall components, is 10012 because a curtain-wall unit 
consists of 12 components and there are 100 possible val-
ues for gene (i.e. planned achievement for a component 
varies within the [0,1] range in increments of 0.01.). Be-
cause it is time-consuming to iteratively and exhaustively 
compute all the cases, MOGA was used to significantly 
reduce the searching time over the large solution spaces 
by excluding dominated solutions in the succeeding gen-
erations and by using the Pareto optimal rank and the 
crowding distance.

To identify optimal mutation and crossover rates, an 
automated sensitivity analysis was performed using the 
system. Setting the options (i.e. mutation rate, crosso-
ver rate, stopping rules, etc.) greatly affects the search-
ing performance of a GA experiment over the solution 
spaces and the reliability of the solution obtained from it. 
In order to ensure that the solution obtained from the GA 
experiment is a global solution, sensitivity analysis was 
performed by incrementing the mutation rate in the range 
of [0,1] by increments of 0.1 while holding the crosso-
ver rate constant, and vice versa as shown in Figure 4. 
The GA output (i.e. construction owner satisfaction, con-
tractor satisfaction, and allowable budget) is plotted (the 
two satisfaction indices against allowable budget). These 
plots represent the optimal trade-off that maximally sat-
isfies the two project participants within the correspond-
ing allowable budget. The system automatically identifies 

the fittest individual by using the optimal mutation and 
crossover rates found. 

The plot shown in Figure 3 Ⓐ represents the local 
solutions obtained from one pair of mutation and crosso-
ver rates, whereas the plot shown in Figure 3 Ⓑ repre-
sents the global solution obtained from another pair of 
mutation and crossover rates. The pair of optimal muta-
tion and crossover rates is identified by computing the ex-
act trade-offs of all mutation and crossover rates combi-
nations iteratively. The theoretical objective functions are 
established by using regression analysis. Because GA pro-
duces discrete optimal solutions, the exact trade-off was 
calculated by executing curve fitting onto the plot that ac-
commodates the objective functions. It is confirmed that 
the automated sensitivity analysis contributes to identify 
the appropriate mutation and crossover rate that results in 
the global solution. Figure 4, which is the zoom-in view 
of Figure 3 Ⓑ, shows the solutions obtained when spe-
cific pairs of mutation and crossover rates were applied. 
The selected pair of optimal mutation and crossover rates 
is the one that has an intersection with the maximum de-
gree of satisfaction and the minimum cost. The contrac-
tor satisfaction (CS) function is assumed to be linear in 
regression analysis when evaluating the dominance of the 
pair of mutation and crossover rates.

The optimal global solution was identified using 
sensitivity analysis as follows. Given the mutation and 
crossover rates of 0.4 and 0.7, the optimal global solu-
tion is found at the intersection of the two satisfactions 
(i.e. OS and CS) where satisfaction and total unit cost are 
83.7% and $360.4, respectively. Given the mutation and 
crossover rates of 0.2 and 0.5, an inferior local solution is 
found at the intersection of the two satisfactions (i.e. OS 
and CS) where satisfaction and total unit cost are 80.3% 
and $372.35, respectively. The findings confirm that it 
is not desirable to initialize an arbitrary pair of mutation 
and crossover rates for a GA experiment and that it is 
not appropriate to accept the solution obtained from a 
single run of GA as performed in existing GA studies.  

Fig. 3. Trade-offs according to the varying mutation and 
crossover rates

Fig. 4. Zoom-in view of the dotted box in Figure 3
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Sensitivity analysis is inevitable for a GA experiment. 
However, it requires the user’s frequent intervention 
which is cumbersome and time consuming because a pair 
of mutation and crossover rates should be reset iteratively 
by manual operation. The automation of sensitivity analy-
sis in SQCO improves the search performance of the GA 
experiment by identifying the optimal set of mutation and 
crossover rates without the user’s intervention.

To execute the GA experiment, the optimal set of 
mutation and crossover rates was used to initialize the 
options of a new GA experiment. With these options, 
the GA was executed for the number of simulation runs 
defined by the user. The reliability of the system was  
improved by accepting the fittest of all the simulation out-
puts as the global solution. SQCO implements QFD, GA, 
sensitivity analysis, and simulation in a single software 
system. The system identifies the optimal set of mutation 
and crossover rates by performing sensitivity analysis and 
computes the optimal global solution by executing the GA 
algorithm iteratively without the user’s intervention at any 
time. Table 2 represents the GA output, i.e. the trade-off 
between owner/contractor satisfactions and the allowable 
budget, when the options (i.e. mutation and crossover 
rates) were adjusted. It is found that the optimal solution 
is obtained at the satisfaction trade-off of 80% and an al-
lowable cost of $360.04 when the mutation rate of 0.2 and 
the crossover rate of 0.7 are used.

The GA experiment is performed using the optimal 
set of options (i.e. population size: 72; mutation: 0.2; and 
crossover: 0.7) computed by sensitivity analysis. The GA 
outputs obtained from the GA experiment with the op-

timal options are as follows: the number of Pareto front 
solutions is 25, the computation time is 14.87 seconds; 
the number of generations is 120, the average distance 
of the Pareto front is 0.068, and the spread of the Pareto 
front is 0.181.

Figure 5 illustrates owner satisfactions and contrac-
tor satisfactions in proportion to the cost of a curtain-
wall unit when the 25 Pareto front solutions were used 
as QFD input variables. The 25 Pareto optimal solutions 
were plotted in a two dimensional surface (i.e. satisfac-
tion index vs. allowable budget). The trade-offs of owner 
and contractor satisfactions are between 82% and 84% 
and the corresponding allowable budgets are between 
$360 and $368. Five of the 25 Pareto optimal solutions 
are obtained as shown in Table 3.

conclusions

SQCO implements a HoQ model that computes construc-
tion owner satisfaction and contractor satisfaction in a  
curtain-wall design by using Quality Function Deployment 
(QFD). The system computes the optimal set of planned 
achievements of the curtain-wall components yielding an 
optimal trade-off of owner and contractor satisfaction. It 
integrates MOGA to effectively solve the multi objec-
tive optimization problem and implements an automated 
sensitivity analysis to facilitate the identification of the  
optimal mutation and crossover rates in the system. A 
global solution is obtained from this new GA experiment. 
The system improves the reliability of the GA experiment 
by reducing the variability of the GA output normally at-

Table 2. Trade-offs corresponding to the parameters

Mutation 
rate

Crossover 
rate Unit cost OS = CS

0.2 0.7 360.04 0.84
0.4 0.7 360.04 0.84
0.7 0.8 360.96 0.84
0.8 0.4 360.93 0.84
0.6 0.4 364.47 0.83
0.6 0.8 363.61 0.83
0.3 0.6 365.95 0.82
0.3 0.7 366.85 0.82
0.2 0.6 369.63 0.81
0.3 0.5 368.48 0.81
0.6 0.2 368.42 0.81
0.7 0.7 368.59 0.81

Table 3. Sample Pareto optimal solutions

Pareto optimal solutions OS CS Unit cost
0.35, 0.67, 0.42, 0.71, 0.60, 0.27,0.51, 0.81, 0.41, 0.75, 0.76, 0.40 0.79 0.86 350
0.38, 0.49, 0.41, 0.65, 0.59, 0.28,0.58, 0.79, 0.66, 0.76, 0.81, 0.36 0.81 0.85 355
0.38, 0.48, 0.42, 0.75, 0.63, 0.29,0.58, 0.77, 0.62, 0.76, 0.83, 0.39 0.82 0.84 360
0.39, 0.72, 0.41, 0.67, 0.60, 0.28,0.57, 0.79, 0.64, 0.74, 0.81, 0.44 0.84 0.82 368
0.33, 0.72, 0.48, 0.74, 0.61, 0.29,0.56, 0.80, 0.75, 0.75, 0.77, 0.40 0.85 0.80 372

Fig. 5. Trade-off between OS and CS
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tributed to random number generation and to arbitrary op-
tion setting. It provides the decision maker with what is 
the optimal set of budget allocations to the components, 
computes Pareto optimal solutions using the multi-objec-
tive genetic algorithm (MOGA), determines the optimal 
solution by which the conflicting interests of the project 
participants are optimally compromised, and quantifies the 
extent of the variance of their satisfactions in proportion to 
the budget allocation. 

SQCO helps: (1) to expedite decision making in the 
design phase, because it has the capability to compute 
owner and contractor satisfactions simultaneously; (2) to 
find a trade-off that leads to the efficient allocation of 
the budget and the improvement of construction quality; 
(3) to select optimal design alternatives of construction 
methods and operations; and (4) to efficiently identify 
the optimal global solution by finding the optimal set of 
mutation and crossover rates using the hybridized sys-
tem with QFD, GA, sensitivity analysis, and simulation, 
and by executing the GA algorithm iteratively without the 
user’s intervention at any time.

As presented in the test case, one may rapidly ex-
ecute the system by integrating the owner requirements 
and their weights of importance, the architects’ expert 
opinions, and the cost information obtained from spe-
cialty contractors. The case study that selected an optimal 
design alternative for a metal curtain-wall unit verifies the 
validity of the system.

The system is applicable only to curtain-wall con-
struction, since the surveys that investigate the construc-
tion owner’s needs and expectations, the architects’ expert 
opinions, and the specialty contractor’s views have been 
conducted only for this construction method. However, 
the system could easily be extended to allow the user to 
resize the number of the owner’s requirements and the 
number of technical attributes and to link with a database 
that accommodates survey data, etc. The methodology of 
SQCO can be reused even if new data should be collected 
for other construction method.
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list of abbreviations
di  – relative importance weights of the ith customer re-

quirement;
Rij  – degree in which the jth curtain-wall component 

(TA) contributes to satisfy the ith owner require-
ment (CR) in full;

R*ij – normalized strength of the relationship between 
the jth curtain-wall component and the ith owner 
requirement;

Tjk  – degree of correlation between the jth and kth  
curtain-wall component (TA);

yj  – degree of the planned achievement of curtain-wall 
components;

xj  – degrees of the actual attainment of TAs into QFD 
to quantify the level of customer satisfaction;

θ0  – satisfaction threshold;
wj  – jth normalized importance weight of curtain-wall 

components;
w*j  – jth actual importance weight of curtain-wall com-

ponents;
cj  – jth primary costs of curtain-wall components;
c  – summation of the primary costs of curtain-wall 

components (cj);
c*  – sum total of actual costs of curtain-wall compo-

nents (c*j);
Cj(xj)  – planned costs calculated using the actual costs 

(c*) and the degree of actual achievement (xj);
C  – sum total of planned costs of all components which 

is the unit cost of a curtain-wall;
OS  – owner satisfaction;
CS  – contractor satisfaction;
C0  – minimum planned cost;
B  – allowable budget;
α0  – satisfaction with total budget committed;
r  – coefficient of curve shape.
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