Share:


Impact of data structure types and spatial resolution on landslide volumetric change measurements

    Ján Šašak Affiliation
    ; Ján Kaňuk Affiliation
    ; Miloš Rusnák Affiliation
    ; Jozef Šupinský Affiliation

Abstract

Terrain is a dynamic component of the landscape, subject to rapid changes, particularly in scenarios such as landslides. This study investigates how the spatial resolution and data structure of digital terrain models (DTMs) influence the estimation of landslide volume changes. We selected a landslide formed by the undercutting action of the Belá River in Slovakia as our research site. Our findings indicate that raster data structures, across various spatial resolutions, generally yield more consistent volume estimates compared to 3D mesh data structures. Nonetheless, at higher spatial resolutions (0.1 m and 0.25 m), the 3D mesh data structure demonstrates superior capability in capturing detailed terrain features, resulting in more precise volume estimations of the landslide.

Keyword : landslide, laser scanning, volume change estimation, 2D raster model, 3D mesh model, spatial resolution

How to Cite
Šašak, J., Kaňuk, J., Rusnák, M., & Šupinský, J. (2024). Impact of data structure types and spatial resolution on landslide volumetric change measurements. Geodesy and Cartography, 50(4), 179–197. https://doi.org/10.3846/gac.2024.20647
Published in Issue
Dec 18, 2024
Abstract Views
50
PDF Downloads
31
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abellán, A., Vilaplana, J. M., Calvet, J., García-Sellés, D., & Asensio, E. (2011). Rockfall monitoring by Terrestrial Laser Scanning – case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain). Natural Hazards and Earth System Sciences, 11(3), 829–841. https://doi.org/10.5194/nhess-11-829-2011

Agüera-Vega, F., Agüera-Puntas, M., Martínez-Carricondo, P., Mancini, F., & Carvajal, F. (2020). Effects of point cloud density, interpolation method and grid size on derived Digital Terrain Model accuracy at micro topography level. International Journal of Remote Sensing, 41(21), 8281–8299. https://doi.org/10.1080/01431161.2020.1771788

Ai, B., Wang, L., Yang, F., Bu, X., Lin, Y., & Lv, G. (2019). Continuous-scale 3D terrain visualization based on a detail-increment model. ISPRS International Journal of Geo-Information, 8(10), Article 465. https://doi.org/10.3390/ijgi8100465

Akay, S. S., Özcan, O., & Şanlı, F. B. (2022). Quantification and visualization of flood-induced morphological changes in meander structures by UAV-based monitoring. Engineering Science and Technology, an International Journal, 27, Article 101016. https://doi.org/10.1016/j.jestch.2021.05.020

Alfredsen, K., Haas, C., Tuhtan, J. A., & Zinke, P. (2018). Brief communication: Mapping river ice using drones and structure from motion. The Cryosphere, 12(2), 627–633. https://doi.org/10.5194/tc-12-627-2018

Alvarez-Vanhard, E., Corpetti, T., & Houet, T. (2021). UAV & satellite synergies for optical remote sensing applications: A literature review. Science of Remote Sensing, 3, Article 100019. https://doi.org/10.1016/j.srs.2021.100019

Antoine, R., Lopez, T., Tanguy, M., Lissak, C., Gailler, L., Labazuy, P., & Fauchard, C. (2020). Geoscientists in the sky: Unmanned aerial vehicles responding to geohazards. Surveys in Geophysics, 41(6), 1285–1321. https://doi.org/10.1007/s10712-020-09611-7

ArcGIS Pro. (2023). ESRI ArcGIS Pro (Version 3.1.0). https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview

Barnhart, T. B., & Crosby, B. T. (2013). Comparing two methods of surface change detection on an evolving thermokarst using high-temporal-frequency terrestrial laser scanning, Selawik River, Alaska. Remote Sensing, 5(6), 2813–2837. https://doi.org/10.3390/rs5062813

Blender. (2018). 3D modelling and rendering package. Stichting Blender Foundation, Amsterdam. http://www.blender.org

Calle, M., Alho, P., & Benito, G. (2018). Monitoring ephemeral river changes during floods with SfM photogrammetry. Journal of Iberian Geology, 44(3), 355–373. https://doi.org/10.1007/s41513-018-0078-y

Caputo, T., Marino, E., Matano, F., Somma, R., Troise, C., & De Natale, G. (2018). Terrestrial Laser Scanning (TLS) data for the analysis of coastal tuff cliff retreat: Application to Coroglio cliff, Naples, Italy. Annals of Geophysics, 61(1), 1–18. https://doi.org/10.4401/ag-7494

Casagli, N., Frodella, W., Morelli, S., Tofani, V., Ciampalini, A., Intrie­ri, E., Raspini, F., Rossi, G., Tanteri, L., & Lu, P. (2017). Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenvironmental Disasters, 4(9), 1–23. https://doi.org/10.1186/s40677-017-0073-1

Chen, Z., Ledoux, H., Khademi, S., & Nan, L. (2022). Reconstructing compact building models from point clouds using deep implicit fields. ISPRS Journal of Photogrammetry and Remote Sensing, 194, 58–73. https://doi.org/10.1016/j.isprsjprs.2022.09.017

Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Gianovelli, F., & Ranzuglia, G. (2008). MeshLab: An open-source mesh processing tool. In Eurographics Italian Chapter Conference (pp. 129–136). The Eurographics Association. https://diglib.eg.org/bitstream/handle/10.2312/LocalChapterEvents.ItalChap.ItalianChapConf2008.129-136/129-136.pdf?sequence=1&isAllowed=y

CloudCompare. (2022). CloudCompare (Version 2.12.4) [GPL software]. http://www.cloudcompare.org/

De Sanjosé Blasco, J. J., Serrano-Cañadas, E., Sánchez-Fernández, M., Gómez-Lende, M., & Redweik, P. (2020). Application of multiple geomatic techniques for coastline retreat analysis: The case of Gerra Beach (Cantabrian Coast, Spain). Remote Sensing, 12(21), Article 3669. https://doi.org/10.3390/rs12213669

Devoto, S., Macovaz, V., Mantovani, M., Soldati, M., & Furlani, S. (2020). Advantages of using UAV digital photogrammetry in the study of slow-moving coastal landslides. Remote Sensing, 12(21), Article 3566. https://doi.org/10.3390/rs12213566

Dolejš, M., Pacina, J., Veselý, M., & Brétt, D. (2020). Aerial bombing crater identification: Exploitation of precise digital terrain models. ISPRS International Journal of Geo-Information, 9(12), Article 713. https://doi.org/10.3390/ijgi9120713

Dong, Z., Liang, F., Yang, B., Xu, Y., Zang, Y., Li, J., Wang, Y., Dai, W., Fan, H., Hyyppä, J., & Stilla, U. (2020). Registration of large-scale terrestrial laser scanner point clouds: A review and benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 163, 327–342. https://doi.org/10.1016/j.isprsjprs.2020.03.013

Duró, G., Crosato, A., Kleinhans, M. G., & Uijttewaal, W. S. (2018). Bank erosion processes measured with UAV-SfM along complex banklines of a straight mid-sized river reach. Earth Surface Dynamics, 6(4), 933–953. https://doi.org/10.5194/esurf-6-933-2018

Florinsky, I. V., & Pankratov, A. N. (2016). A universal spectral analytical method for digital terrain modeling. International Journal of Geographical Information Science, 30(12), 2506–2528. https://doi.org/10.1080/13658816.2016.1188932

Gallay, M., Kaňuk, J., Hochmuth, Z., Meneely, J. D., Hofierka, J., & Sedlák, V. (2015). Large-scale and high-resolution 3-D cave mapping by terrestrial laser scanning: A case study of the Domica Cave, Slovakia. International Journal of Speleology, 44(3), 277–291. https://doi.org/10.5038/1827-806X.44.3.6

Gallay, M., Kaňuk, J., Šašak, J., Šupinský, J., Hofierka, J., & Minár, J. (2018). High-resolution digital terrain modelling of a rugged alpine terrain by fusing data from terrestrial laser scanning and UAV photogrammetry. PeerJ Preprints, 1–5. https://doi.org/10.7287/peerj.preprints.27078v1

Girardeau-Montaut, D., Roux, M., Marc, R., & Thibault, G. (2005). Change detection on point cloud data acquired with a ground laser scanner. In G. Vosselman & C. Brenner (Eds.), Proceedings of the ISPRS Workshop Laser Scanning (pp. 30–35), Enschede, the Netherlands. https://www.isprs.org/proceedings/xxxvi/3-w19/

GRASS GIS. (2022). GRASS GIS (Version 7.8.7). https://grass.osgeo.org/

Guerra-Hernández, J., Cosenza, D. N., Rodriguez, L. C. E., Silva, M., Tomé, M., Díaz-Varela, R. A., & González-Ferreiro, E. (2018). Comparison of ALS-and UAV (SfM)-derived high-density point clouds for individual tree detection in Eucalyptus plantations. International Journal of Remote Sensing, 39(15–16), 5211–5235. https://doi.org/10.1080/01431161.2018.1486519

Harding, C., Hasiuk, F., & Wood, A. (2021). TouchTerrain—3D printable terrain models. ISPRS International Journal of Geo-Information, 10(3), Article 108. https://doi.org/10.3390/ijgi10030108

Hengl, T. (2006). Finding the right pixel size. Computers & Geosciences, 32(9), 1283–1298. https://doi.org/10.1016/j.cageo.2005.11.008

Huang, R., Jiang, L., Wang, H., & Yang, B. (2019). A bidirectional analysis method for extracting glacier crevasses from airborne LiDAR point clouds. Remote Sensing, 11(20), Article 2373. https://doi.org/10.3390/rs11202373

James, M. R., & Robson, S. (2012). Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research: Earth Surface, 117(F3), Article F030173. https://doi.org/10.1029/2011JF002289

Jiang, N., Li, H., Hu, Y., Zhang, J., Dai, W., Li, C., & Zhou, J. W. (2021). A monitoring method integrating terrestrial laser scanning and unmanned aerial vehicles for different landslide deformation patterns. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 10242–10255. https://doi.org/10.1109/JSTARS.2021.3117946

Kazhdan, M., Bolitho, M., & Hoppe, H. (2006). Poisson surface reconstruction. In K. Polthier & A. Sheffer (Eds.), Eurographics Symposium on Geometry Processing (pp. 1–10). The Eurogra­phics Association. https://hhoppe.com/poissonrecon.pdf

Kermarrec, G., Yang, Z., & Czerwonka-Schröder, D. (2022). Classification of terrestrial laser scanner point clouds: A comparison of methods for landslide monitoring from mathematical surface approximation. Remote Sensing, 14(20), Article 5099. https://doi.org/10.3390/rs14205099

Kuželka, K., Slavík, M., & Surový, P. (2020). Very high density point clouds from UAV laser scanning for automatic tree stem detection and direct diameter measurement. Remote Sensing, 12(8), Article 1236. https://doi.org/10.3390/rs12081236

Kyriou, A., Nikolakopoulos, K., Koukouvelas, I., & Lampropoulou, P. (2021). Repeated UAV campaigns, GNSS measurements, GIS, and petrographic analyses for landslide mapping and monitoring. Minerals, 11(3), Article 300. https://doi.org/10.3390/min11030300

Lague, D., Brodu, N., & Leroux, J. (2013). Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (NZ). ISPRS Journal of Photogrammetry and Remote Sensing, 82, 10–26.

https://doi.org/10.1016/j.isprsjprs.2013.04.009

LAStools. (2023). Efficient LiDAR processing software (Version 220926, academic). https://rapidlasso.de/lastools-220107/

Lissak, C., Bartsch, A., De Michele, M., Gomez, C., Maquaire, O., Raucoules, D., & Roulland, T. (2020). Remote sensing for assessing landslides and associated hazards. Surveys in Geophysics, 41(6), 1391–1435. https://doi.org/10.1007/s10712-020-09609-1

Mancini, F., Castagnetti, C., Rossi, P., Dubbini, M., Fazio, N. L., Perroti, M., & Lollino, P. (2017). An integrated procedure to assess the stability of coastal rocky cliffs: From UAV close-range photogrammetry to geomechanical finite element modeling. Remote Sensing, 9(12), Article 1235. https://doi.org/10.3390/rs9121235

Marotta, F., Teruggi, S., Achille, C., Vassena, G. P. M., & Fassi, F. (2021). Integrated laser scanner techniques to produce high-resolution DTM of vegetated territory. Remote Sensing, 13(13), Article 2504. https://doi.org/10.3390/rs13132504

Mazzanti, P., Caporossi, P., Brunetti, A., Mohammadi, F. I., & Bozzano, F. (2021). Short-term geomorphological evolution of the Poggio Baldi landslide upper scarp via 3D change detection. Landslides, 18(7), 2367–2381. https://doi.org/10.1007/s10346-021-01647-z

Meng, Q., Li, W., Raspini, F., Xu, Q., Peng, Y., Ju, Y., Zheng, Y., & Casagli, N. (2021). Time-series analysis of the evolution of large-scale loess landslides using InSAR and UAV photogrammetry techniques: A case study in Hongheyan, Gansu Province, Northwest China. Landslides, 18(1), 251–265. https://doi.org/10.1007/s10346-020-01490-8

Mineo, S., Caliò, D., & Pappalardo, G. (2022). UAV-based photogrammetry and infrared thermography applied to rock mass survey for geomechanical purposes. Remote Sensing, 14(3), Article 473. https://doi.org/10.3390/rs14030473

Mirtich, B. (1996). Fast and accurate computation of polyhedral mass properties. Journal of Graphics Tools, 1(2), 31–50. https://doi.org/10.1080/10867651.1996.10487458

Mishra, N., Chaudhuri, G., Mainali, K., Mal, S., Tiruwa, B., & Singh, P. (2020). Quantifying melt dynamics on a debris-covered Himalayan glacier using repeated UAS photogrammetry derived DSM and point cloud differencing. Preprints. https://doi.org/10.20944/preprints202007.0555.v1

Mitášová, H., & Mitáš, L. (1993). Interpolation by regularized spline with tension: I. Theory and implementation. Mathematical Geology, 25, 641–655. https://doi.org/10.1007/BF00893171

Mitasova, H., Hardin, E., Overton, M., & Harmon, R. S. (2009). New spatial measures of terrain dynamics derived from time series of lidar data. In 2009 17th International Conference on Geoinformatics (pp. 1–6), Fairfax, VA, USA. https://doi.org/10.1109/GEOINFORMATICS.2009.5293539

Mucherino, A., Papajorgji, P. J., & Pardalos, P. M. (2009). k-nearest neighbor classification. In Springer optimization and its applications: Vol. 34. Data mining in agriculture (pp. 83–106). Springer. https://doi.org/10.1007/978-0-387-88615-2_4

Münzinger, M., Prechtel, N., & Behnisch, M. (2022). Mapping the urban forest in detail: From LiDAR point clouds to 3D tree models. Urban Forestry & Urban Greening, 74, Article 127637. https://doi.org/10.1016/j.ufug.2022.127637

Nemčok, J., Bezák, V., Biely, A., Gorek, A., Gross, P., Halouzka, R., Janák, M., Kahan, Š., Mello, J., Reichwalder, P., Rackowski, W., Roniewicz, P., Ryka, W., Wieczorek, J., & Zelman, J. (1994). Geologická mapa Tatier v mierke 1:50 000. Geologický ústav Dionýza Štúra. https://www.geology.sk/24-geologicka-mapa-tatier-1-50-000/

Nguyen, V. T., Fournier, R. A., Côté, J. F., & Pimont, F. (2022). Estimation of vertical plant area density from single return terrestrial laser scanning point clouds acquired in forest environments. Remote Sensing of Environment, 279, Article 113115. https://doi.org/10.1016/j.rse.2022.113115

Nourbakhshbeidokhti, S., Kinoshita, A. M., Chin, A., & Florsheim, J. L. (2019). A workflow to estimate topographic and volumetric changes and errors in channel sedimentation after disturbance. Remote Sensing, 11(5), Article 586. https://doi.org/10.3390/rs11050586

Pellicani, R., Argentiero, I., Manzari, P., Spilotro, G., Marzo, C., Ermini, R., & Apollonio, C. (2019). UAV and airborne LiDAR data for interpreting kinematic evolution of landslide movements: The case study of the Montescaglioso landslide (Southern Italy). Geosciences, 9(6), Article 248. https://doi.org/10.3390/geosciences9060248

Peterson, S., Lopez, J., & Munjy, R. (2019). Comparison of UAV imagery-derived point cloud to terrestrial laser scanner point cloud. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 149–155. https://doi.org/10.5194/isprs-annals-IV-2-W5-149-2019

Peytavie, A., Galin, E., Grosjean, J., & Merillou, S. (2009). Arches: A framework for modeling complex terrains. Computer Graphics Forum, 28(2), 457–467. https://doi.org/10.1111/j.1467-8659.2009.01385.x

Rice, A. R., Cassidy, R., Jordan, P., Rogers, D., & Arnscheidt, J. (2021). Fine-scale quantification of stream bank geomorphic volume loss caused by cattle access. Science of the Total Environment, 769, Article 144468. https://doi.org/10.1016/j.scitotenv.2020.144468

Roulland, T., Maquaire, O., Costa, S., Medjkane, M., Davidson, R., Fauchard, C., & Antoine, R. (2022). Seasonal activity quantification of coast badlands by TLS monitoring over five years at the “Vaches Noires” cliffs (Normandy, France). Geomorphology, 400, Article 108083. https://doi.org/10.1016/j.geomorph.2021.108083

Rusnák, M., Kaňuk, J., Kidová, A., Šašak, J., Lehotský, M., Pöppl, R., & Šupinský, J. (2020). Channel and cut-bluff failure connectivity in a river system: Case study of the braided-wandering Belá River, Western Carpathians, Slovakia. Science of the Total Environment, 733, Article 139409. https://doi.org/10.1016/j.scitotenv.2020.139409

Sailer, R., Bollmann, E., Hoinkes, S., Rieg, L., Sproß, M., & Stötter, J. (2012). Quantification of geomorphodynamics in glaciated and recently deglaciated terrain based on airborne laser scanning data. Geografiska Annaler, Series A: Physical Geography, 94, 17–32. https://doi.org/10.1111/j.1468-0459.2012.00456.x

Scaioni, M., Feng, T., Lu, P., Qiao, G., Tong, X., Li, R., Barazzetti, L., Previtali, M., & Roncella, R. (2015). Close-range photogrammetric techniques for deformation measurement: Applications to landslides. In M. Scaioni (Ed.), Modern technologies for landslide monitoring and prediction (pp. 13–41). Springer Natural Hazards. https://doi.org/10.1007/978-3-662-45931-7_2

Stumvoll, M. J., Schmaltz, E. M., & Glade, T. (2021). Dynamic characterization of a slow-moving landslide system–Assessing the challenges of small process scales utilizing multi-temporal TLS data. Geomorphology, 389, Article 107803. https://doi.org/10.1016/j.geomorph.2021.107803

Šašak, J., Gallay, M., Kaňuk, J., Hofierka, J., & Minár, J. (2019). Combined use of terrestrial laser scanning and UAV photogrammetry in mapping alpine terrain. Remote Sensing, 11(18), Article 2154. https://doi.org/10.3390/rs11182154

Šupinský, J., Kaňuk, J., Hochmuth, Z., & Gallay, M. (2019). Detecting dynamics of cave floor ice with selective cloud-to-cloud approach. The Cryosphere, 13(11), 2835–2851. https://doi.org/10.5194/tc-13-2835-2019

Štroner, M., Křemen, T., Braun, J., Urban, R., Blistan, P., & Kovanič, L. (2019). Comparison of 2.5D volume calculation methods and software solutions using point clouds scanned before and after mining. Acta Montanistica Slovaca, 24(4), 296–306. https://actamont.tuke.sk/pdf/2019/n4/2stroner.pdf

Tian, J., Dai, T., Li, H., Liao, C., Teng, W., Hu, Q., Ma, W., & Xu, Y. (2019). A novel tree height extraction approach for individual trees by combining TLS and UAV image-based point cloud integration. Forests, 10(7), Article 537. https://doi.org/10.3390/f10070537

Wade, T. G., Wickham, J. D., Nash, M. S., Neale, A. C., Riitters, K. H., & Jones, K. B. (2003). A comparison of vector and raster GIS methods for calculating landscape metrics used in environmental assessments. Photogrammetric Engineering & Remote Sensing, 69(12), 1399–1405. https://doi.org/10.14358/PERS.69.12.1399

Wang, Q., & Kim, M. K. (2019). Applications of 3D point cloud data in the construction industry: A fifteen-year review from 2004 to 2018. Advanced Engineering Informatics, 39, 306–319. https://doi.org/10.1016/j.aei.2019.02.007

Williams, R. (2012). DEMs of difference. Geomorphological Techniques, 2, 1–17. https://www.researchgate.net/publication/310596075_DEMs_of_Difference/citations

Woolard, J. W., & Colby, J. D. (2002). Spatial characterization, resolution, and volumetric change of coastal dunes using airborne LIDAR: Cape Hatteras, North Carolina. Geomorphology, 48(1–3), 269–287. https://doi.org/10.1016/S0169-555X(02)00185-X

Zhang, H., Bauters, M., Boeckx, P., & Van Oost, K. (2021). Mapping canopy heights in dense tropical forests using low-cost UAV-derived photogrammetric point clouds and machine learning approaches. Remote Sensing, 13(18), Article 3777. https://doi.org/10.3390/rs13183777

Zhang, Y., Shen, C., Zhou, S., & Luo, X. (2022). Analysis of the influence of forests on landslides in the Bijie Area of Guizhou. Forests, 13(7), Article 1136. https://doi.org/10.3390/f13071136

Zhang, Z., Gerke, M., Vosselman, G., & Yang, M. Y. (2018). Filtering photogrammetric point clouds using standard LiDAR filters towards DTM generation. ISPRS Annals of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 4(2), 319–326. https://doi.org/10.5194/isprs-annals-IV-2-319-2018

Zhong, C., Liu, Y., Gao, P., Chen, W., Li, H., Hou, Y., Nuremanguli, T., & Ma, H. (2019). Landslide mapping with remote sensing: Challenges and opportunities. International Journal of Remote Sensing, 41(4), 1555–1581. https://doi.org/10.1080/01431161.2019.1672904

Zhou, Q., Grinspun, E., Zorin, D., & Jacobson, A. (2016). Mesh arrangements for solid geometry. ACM Transactions on Graphics, 35(4), 1–15. https://doi.org/10.1145/2897824.2925901