Share:


Google Earth Engine for Landsat image processing and assessing LULC classification in southwestern Côte D’ivoire

    Christian Jonathan Anoma Kouassi   Affiliation
    ; Chen Qian Affiliation
    ; Dilawar Khan Affiliation
    ; Lutumba Suika Achille Affiliation
    ; Zhang Kebin Affiliation
    ; James Kehinde Omifolaji Affiliation
    ; Xiaohui Yang Affiliation

Abstract

High-accuracy land use and land cover maps (LULC) are increasingly in demand for environmental management and decision-making. Despite the limitation, Machine learning classifiers (MLC) fill the gap in any complex issue related to LULC data accuracy. Visualizing land-cover information is critical in mitigating Côte d’Ivoire’s deforestation and land use planning using the Google Earth Engine (GEE) software. This paper estimates the probability of RF classification in South Western Côte d’Ivoire. Landsat 8 Surface Reflectance Tiers 1 (L8OLI/TIRS) data with a resolution of 30 mn for 2020 were used to classify the western and southwestern Forest areas of Côte d’Ivoire. The Random Forest (RF) learning classifier was calibrated using 80% training data and 20% testing data to assess GEE classification accuracy performance. The findings indicate that the Forest land class accounts for 39.48% of the entire study area, followed by the Bareland class, the Cultivated land class 21.28±0.90%, the Water class 1.94±0.27%, and the 0.96±0.60% Urban class respectively. The classification reliability test results show that 99.85%±1.95 is the overall training accuracy (OTA), and 99.81±1.95% for the training kappa (TK). The overall validation accuracy (VOA) is 94.02±1.90%, while 92.25±1.88% validation kappa (VK) and 92.45±1.88% RF Accuracy. The different coefficients classification accuracy results obtained from the RF confusion matrix indicate that each class has three good performances. This is due to the cultivated land samples lower spatial resolution and smaller sample numbers, resulting in a lower PA for this class than for the other classes. All had producer accuracy (PA) and user accuracy (UA) more than 90% using the L8OLI/TIRS data. Using the RF-based classification method integrated into the GEE provides an efficient and high scores accuracy for classifying land use and land cover in the study area.

Keyword : supervised classification, land-use/land-cover, Google Earth Engine, Random Forest, accuracy assessment, deforestation

How to Cite
Kouassi, C. J. A., Qian, C., Khan, D., Achille, L. S., Kebin, Z., Omifolaji, J. K., & Yang, X. (2023). Google Earth Engine for Landsat image processing and assessing LULC classification in southwestern Côte D’ivoire. Geodesy and Cartography, 49(1), 37–50. https://doi.org/10.3846/gac.2023.16805
Published in Issue
Mar 13, 2023
Abstract Views
691
PDF Downloads
564
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Adelabu, S., Mutanga, O., & Adam, E. (2015). Testing the reliability and stability of the internal accuracy assessment of random forest for classifying tree defoliation levels using different validation methods. Geocarto International, 30(7), 810–821. https://doi.org/10.1080/10106049.2014.997303

Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., & Parsian, S. (2020). Google Earth Engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052

Athey, S., Tibshirani, J., & Wager, S. (2019). Generalized random forests. The Annals of Statistics, 47, 1148–1178. https://doi.org/10.1214/18-AOS1709

Azzari, G., & Lobell, D. (2017). Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring. Remote Sensing of Environment, 202, 64–74. https://doi.org/10.1016/j.rse.2017.05.025

Barima, Y. S. S., Assalé, A. A. Y., Adiko, A. F. A. E., Kouakou, A. T. M., & Bamba, I. (2020). Dynamics of supply services provided by a protected forest in Côte d’Ivoire. International Journal of Biodiversity and Conservation, 12(4), 337–349. https://doi.org/10.5897/IJBC2020.1436

Barima, Y. S. S., Kouakou, A. T. M., Bamba, I., Sangne, Y. C., Godron, M., Andrieu, J., & Bogaert, J. (2016). Cocoa crops are destroying the forest reserves of the classified forest of Haut-Sassandra (Ivory Coast). Global Ecology and Conservation, 8, 85–98. https://doi.org/10.1016/j.gecco.2016.08.009

Bartlett, P., Freund, Y., Lee, W. S., & Schapire, R. E. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5), 1651–1686. https://doi.org/10.1214/aos/1024691352

Belgiu, M., & Csillik, O. (2018). Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204, 509–523. https://doi.org/10.1016/j.rse.2017.10.005

Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

Benz, S. A., Bayer, P., & Blum, P. (2017). Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany. Science of the Total Environment, 584–585, 145–153. https://doi.org/10.1016/j.scitotenv.2017.01.139

Bitty, E. A., Bi, S. G., Bene, J.-C. K., Kouassi, P. K., & McGraw, W. S. (2015). Cocoa farming and primate extirpation inside Cote d’Ivoire’s protected areas. Tropical Conservation Science, 8, 95–113. https://doi.org/10.1177/194008291500800110

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324

Bwangoy, J.-R. B., Hansen, M. C., Roy, D. P., De Grandi, G., & Justice, C. O. (2010). Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sensing of Environment, 114, 73–86. https://doi.org/10.1016/j.rse.2009.08.004

Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd International Conference on Machine Learning (pp. 161–168). https://doi.org/10.1145/1143844.1143865

Cecchi, P., Gourdin, F., Koné, S., Corbin, D., Etienne, J., & Casenave, A. (2009). Small reservoirs of Northern Côte d’Ivoire: Inventory and hydrological potentialities. Science et changements planétaires/Sécheresse, 20, 112–122. https://doi.org/10.1684/sec.2009.0164

Chatelain, C., Dao, H., Gautier, L., & Spichiger, R. (2004). Forest cover changes in Côte d’Ivoire and Upper Guinea. In Biodiversity of West African forests: Ecological atlas of woody plant species, (pp. 15–32). CABI Publishing. https://doi.org/10.1079/9780851997346.0015

Chatelain-Ponroy, S. (2010). Une voie de compréhension du contrôle de gestion dans les organisations non marchandes: la métaphore de l’iceberg. Politiques et management public, 27, 73–103. https://doi.org/10.4000/pmp.3005

Cihlar, J. (2000). Land cover mapping of large areas from satellites: Status and research priorities. International Journal of Remote Sensing, 21, 1093–1114. https://doi.org/10.1080/014311600210092

Cohen, W. B., Yang, Z., & Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync – Tools for calibration and validation. Remote Sensing of Environment, 114(12), 2911–2924. https://doi.org/10.1016/j.rse.2010.07.010

Collins, L., McCarthy, G., Mellor, A., Newell, G., & Smith, L. (2020). Training data requirements for fire severity mapping using Landsat imagery and random forest. Remote Sensing of Environment, 245, 111839. https://doi.org/10.1016/j.rse.2020.111839

Congalton, R. G., & Green, K. (2019). Assessing the accuracy of remotely sensed data: Principles and practices. CRC Press. https://doi.org/10.1201/9780429052729

Corona, P., Cartisano, R., Salvati, R., Chirici, G., Floris, A., Di Martino, P., Marchetti, M., Scrinzi, G., Clementel, F., & Travaglini, D. (2012). Airborne Laser Scanning to support forest resource management under alpine, temperate and Mediterranean environments in Italy. European Journal of Remote Sensing, 45(1), 27–37. https://doi.org/10.5721/EuJRS20124503

e Certau, M., Giard, L., & Mayol, P. (1999). La invención de lo cotidiano 2: Habitar, cocinar (pp. 151–174). El Oficio de la Historia.

Desanker, P., Frost, P., Justice, C., & Scholes, R. (1997). The Miombo Network: Framework for a terrestrial transect study of land-use and land-cover change in the miombo ecosystems of Central Africa (IGBP Global change report). IGBP. https://digital.library.unt.edu/ark:/67531/metadc11998/

Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley Jr, R. D., Beckmann, T., Schmidt, G. L., Dwyer, J. L., Hughes, M. J., & Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379–390. https://doi.org/10.1016/j.rse.2017.03.026

Fonseka, H., Zhang, H., Sun, Y., Su, H., Lin, H., & Lin, Y. (2019). Urbanization and its impacts on land surface temperature in Colombo metropolitan area, Sri Lanka, from 1988 to 2016. Remote Sensing, 11, 957. https://doi.org/10.3390/rs11080957

Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185–201. https://doi.org/10.1016/S0034-4257(01)00295-4

Foody, G. M., Ling, F., Boyd, D. S., Li, X., & Wardlaw, J. (2019). Earth observation and machine learning to meet sustainable development goal 8.7: Mapping sites associated with slavery from space. Remote Sensing, 11, 266. https://doi.org/10.3390/rs11030266

Forghani-Zadeh, H. P., & Rincón-Mora, G. A. (2007). An accurate, continuous, and lossless self-learning CMOS current-sensing scheme for inductor-based DC-DC converters. IEEE Journal of Solid-State Circuits, 42(3), 665–679. https://doi.org/10.1109/JSSC.2006.891721

Ge, Y., Hu, S., Ren, Z., Jia, Y., Wang, J., Liu, M., Zhang, D., Zhao, W., Luo, Y., & Fu, Y. (2019). Mapping annual land use changes in China’s poverty-stricken areas from 2013 to 2018. Remote Sensing of Environment, 232, 111285. https://doi.org/10.1016/j.rse.2019.111285

Ghorbanian, A., Kakooei, M., Amani, M., Mahdavi, S., Mohammadzadeh, A., & Hasanlou, M. (2020). Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 276–288. https://doi.org/10.1016/j.isprsjprs.2020.07.013

Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forests for land cover classification. Pattern Recognition Letters, 27(4), 294–300. https://doi.org/10.1016/j.patrec.2005.08.011

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031

Griffiths, P., van der Linden, S., Kuemmerle, T., Hostert, P. (2013). A pixel-based Landsat compositing algorithm for large area land cover mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(5), 2088–2101. https://doi.org/10.1109/JSTARS.2012.2228167

Gudmann, A., Csikós, N., Szilassi, P., & Mucsi, L. (2020). Improvement in satellite image-based land cover classification with landscape metrics. Remote Sensing, 12, 3580. https://doi.org/10.3390/rs12213580

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., & Loveland, T. R. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853. https://doi.org/10.1126/science.1244693

Hansen, M. C., Roy, D. P.; Lindquist, E., Adusei, B., Justice, C. O., & Altstatt, A. (2008). A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sensing of Environment, 112(5), 2495–2513. https://doi.org/10.1016/j.rse.2007.11.012

Hatwell, J., Gaber, M. M., & Azad, R. M. A. (2020). CHIRPS: Explaining random forest classification. Artificial Intelligence Review, 53, 5747–5788. https://doi.org/10.1007/s10462-020-09833-6

Irons, J. R., Dwyer, J. L., & Barsi, J. A. (2012). The next Landsat satellite: The Landsat data continuity mission. Remote Sensing of Environment, 122, 11–21. https://doi.org/10.1016/j.rse.2011.08.026

Joshi, A. R., Dinerstein, E., Wikramanayake, E., Anderson, M. L., Olson, D., Jones, B. S., Seidensticker, J., Lumpkin, S., Hansen, M. C., Sizer, N. C., Davis, C. L., Palminteri, S., & Hahn, N. R. (2016). Tracking changes and preventing loss in critical tiger habitat. Science Advances, 2(4), 1–8. https://doi.org/10.1126/sciadv.1501675

Kennedy, R. E., Yang, Z., & Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr – Temporal segmentation algorithms. Remote Sensing of Environment, 114(12), 2897–2910. https://doi.org/10.1016/j.rse.2010.07.008

Keyport, R. N., Oommen, T., Martha, T. R., Sajinkumar, K., & Gierke, J. S. (2018). A comparative analysis of pixel-and object-based detection of landslides from very high-resolution images. International Journal of Applied Earth Observation and Geoinformation, 64, 1–11. https://doi.org/10.1016/j.jag.2017.08.015

Koua, K. A. N., Kpangui, K. B., & Barima, Y. S. S. (2020). Impact of cocoa cultivation in the forest-savannah transition zone of western Côte d’Ivoire. International Journal of Biodiversity and Conservation, 12(4), 291–304. https://doi.org/10.5897/IJBC2020.1430

Kouassi, J., Gyau, A., Diby, L., Bene, Y., & Kouamé, C. (2021). Assessing land use and land cover change and farmers’ perceptions of deforestation and land degradation in South-West Côte d’Ivoire, West Africa. Land, 10, 429. https://doi.org/10.3390/land10040429

Landis, J. R., & Koch, G. G. (1977). An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics, 33(2), 363–374. https://doi.org/10.2307/2529786

Liu, X., Hu, G., Chen, Y., Li, X., Xu, X., Li, S., Pei, F., & Wang, S. (2018). High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sensing of Environment, 209, 227–239. https://doi.org/10.1016/j.rse.2018.02.055

Lu, D., Weng, Q., & Li, G. (2006). Residential population estimation using a remote sensing derived impervious surface approach. International Journal of Remote Sensing, 27(16), 3553–3570. https://doi.org/10.1080/01431160600617202

Luo, J., Ma, X., Chu, Q., Xie, M., & Cao, Y. (2021). Characterizing the up-to-date land-use and land-cover change in Xiong’an New Area from 2017 to 2020 using the multi-temporal Sentinel-2 images on Google Earth Engine. ISPRS International Journal of Geo-Information, 10(7), 464. https://doi.org/10.3390/ijgi10070464

Magidi, J., Nhamo, L., Mpandeli, S., & Mabhaudhi, T. (2021). Application of the Random Forest classifier to map irrigated areas using Google Earth Engine. Remote Sensing, 13(5), 876. https://doi.org/10.3390/rs13050876

Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., & Gill, E. (2019). The first wetland inventory map of newfoundland at a spatial resolution of 10 m using Sentinel-1 and Sentinel-2 data on the Google Earth Engine cloud computing platform. Remote Sensing, 11(1), 43. https://doi.org/10.3390/rs11010043

Mas, J. (2000). Une revue des méthodes et des techniques de télédétection du changement. Canadian Journal of Remote Sensing, 26(4), 349–362. https://doi.org/10.1080/07038992.2000.10874785

Meher, P. K., Sahu, T. K., & Rao, A. R. (2016). Prediction of donor splice sites using random forest with a new sequence encoding approach. BioData Mining, 9, 1–25. https://doi.org/10.1186/s13040-016-0086-4

Mellor, A., & Boukir, S. (2017). Exploring diversity in ensemble classification: Applications in large area land cover mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 129, 151–161. https://doi.org/10.1016/j.isprsjprs.2017.04.017

Mellor, A., Boukir, S., Haywood, A., & Jones, S. (2015). Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 155–168. https://doi.org/10.1016/j.isprsjprs.2015.03.014

Mellor, A., Haywood, A., Stone, C., & Jones, S. (2013). The performance of random forests in an operational setting for large area sclerophyll forest classification. Remote Sensing, 5, 2838–2856. https://doi.org/10.3390/rs5062838

Moore, R., & Hansen, M. (2011). Google Earth Engine: A new cloud-computing platform for global-scale earth observation data and analysis. In Proceedings of the AGU Fall Meeting (Abstract id. IN43C-02). https://ui.adsabs.harvard.edu/abs/2011AGUFMIN43C..02M/abstract

Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001

Naboureh, A., Ebrahimy, H., Azadbakht, M., Bian, J., & Amani, M. (2020). RUESVMs: An ensemble method to handle the class imbalance problem in land cover mapping using Google Earth Engine. Remote Sensing, 12(21), 3484. https://doi.org/10.3390/rs12213484

Nery, T., Sadler, R., Solis-Aulestia, M., White, B., Polyakov, M., & Chalak, M. (2016). Comparing supervised algorithms in Land Use and Land Cover classification of a Landsat time-series. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 5165–5168), Beijing, China. https://doi.org/10.1109/IGARSS.2016.7730346

Nyland, K. E., Gunn, G. E., Shiklomanov, N. I., Engstrom, R. N., & Streletskiy, D. A. (2018). Land cover change in the lower Yenisei River using dense stacking of landsat imagery in Google Earth Engine. Remote Sensing, 10(8), 1226. https://doi.org/10.3390/rs10081226

Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42–57. https://doi.org/10.1016/j.rse.2014.02.015

Pal, M., & Mather, P. (2005). Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26(5), 1007–1011. https://doi.org/10.1080/01431160512331314083

Pareeth, S., Karimi, P., Shafiei, M., & De Fraiture, C. (2019). Mapping agricultural landuse patterns from time series of Landsat 8 using random forest based hierarchial approach. Remote Sensing, 11(5), 601. https://doi.org/10.3390/rs11050601

Parente, L., & Ferreira, L. (2018). Assessing the spatial and occupation dynamics of the Brazilian pasturelands based on the automated classification of MODIS images from 2000 to 2016. Remote Sensing, 10, 606. https://doi.org/10.3390/rs10040606

Phan, T. N., Kuch, V., & Lehnert, L. W. (2020). Land cover classification using Google Earth Engine and Random Forest classifier – The role of image composition. Remote Sensing, 12(15), 2411. https://doi.org/10.3390/rs12152411

Plourde, L., & Congalton, R. G. (2003). Sampling method and sample placement. Photogrammetric Engineering & Remote Sensing, 69(3), 289–297. https://doi.org/10.14358/PERS.69.3.289

Pontius, R. (2001). Quantification error versus location error in comparison of categorical maps. Photogrammetric Engineering & Remote Sensing, 66, 1011–1016.

Probst, P., & Boulesteix, A.-L. (2017). To tune or not to tune the number of trees in random forest. Journal of Machine Learning Research, 18, 6673–6690.

Qu, L., Li, M., Chen, Z., & Zhi, J. (2021). A modified self-adaptive method for mapping annual 30-m land use/land cover using Google Earth Engine: A case study of Yangtze River Delta. Chinese Geographical Science, 31, 782–794. https://doi.org/10.1007/s11769-021-1226-4

Ravanelli, R., Nascetti, A., Cirigliano, R. V., Di Rico, C., Leuzzi, G., Monti, P., & Crespi, M. (2018). Monitoring the impact of land cover change on surface urban heat island through Google Earth Engine: Proposal of a global methodology, first applications and problems. Remote Sensing, 10(9), 1488. https://doi.org/10.3390/rs10091488

Robinson, N. P., Allred, B. W., Jones, M. O., Moreno, A., Kimball, J. S., Naugle, D. E., Erickson, T. A., & Richardson, A. D. (2017). A dynamic Landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States. Remote Sensing, 9(8), 863. https://doi.org/10.3390/rs9080863

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012b). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104. https://doi.org/10.1016/j.isprsjprs.2011.11.002

Rodriguez-Galiano, V., Chica-Olmo, M., Abarca-Hernandez, F., Atkinson, P. M., & Jeganathan, C. (2012a). Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sensing of Environment, 121, 93–107. https://doi.org/10.1016/j.rse.2011.12.003

Ruf, F., & Zadi, H. (1998). Cocoa: From deforestation to reforestation. https://agritrop.cirad.fr/390123/1/document_390123.pdf

Ruf, F., Schroth, G., & Doffangui, K. (2015). Climate change, cocoa migrations and deforestation in West Africa: What does the past tell us about the future? Sustainability Science, 10, 101–111. https://doi.org/10.1007/s11625-014-0282-4

Schmidt, J., Marques, M. R., Botti, S., & Marques, M. A. (2019). Recent advances and applications of machine learning in solid-state materials science. npj Computational Materials, 5, 1–36. https://doi.org/10.1038/s41524-019-0221-0

Shetty, S. (2019). Analysis of machine learning classifiers for LULC classification on Google Earth Engine. University of Twente.

Shetty, S., Gupta, P. K., Belgiu, M., & Srivastav, S. (2021). Assessing the effect of training sampling design on the performance of machine learning classifiers for land cover mapping using multi-temporal remote sensing data and Google Earth Engine. Remote Sensing, 13(8), 1433. https://doi.org/10.3390/rs13081433

Song, X.-D., Brus, D. J., Liu, F., Li, D.-C., Zhao, Y.-G., Yang, J.-L., & Zhang, G.-L. (2016). Mapping soil organic carbon content by geographically weighted regression: A case study in the Heihe River Basin, Chin. Geoderma, 261, 11–22. https://doi.org/10.1016/j.geoderma.2015.06.024

Stehman, S. V. (2009). Sampling designs for accuracy assessment of land cover. International Journal of Remote Sensing, 30, 5243–5272. https://doi.org/10.1080/01431160903131000

Story, M., & Congalton, R. G. (1986). Accuracy assessment: A user’s perspective. Photogrammetric Engineering & Remote Sensing, 52(3), 397–399.

Strahler, A. H., Boschetti, L., Foody, G. M., Friedl, M. A., Hansen, M. C., Herold, M., Mayaux, P., Morisette, J. T., Stehman, S. V., & Woodcock, C. E. (2006). Global land cover validation: Recommendations for evaluation and accuracy assessment of global land cover maps (EUR 22156 EN). European Communities.

Tassi, A., Gigante, D., Modica, G., Di Martino, L., & Vizzari, M. (2021). Pixel-vs. object-based Landsat 8 data classification in Google Earth engine using random forest: The case study of Maiella National Park. Remote Sensing, 13(12), 2299. https://doi.org/10.3390/rs13122299

Tatsumi, K., Yamashiki, Y., Torres, M. A. C., & Taipe, C. L. R. (2015). Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data. Computers and Electronics in Agriculture, 115, 171–179. https://doi.org/10.1016/j.compag.2015.05.001

Thébault, E., & Loreau, M. (2005). Trophic interactions and the relationship between species diversity and ecosystem stability. The American Naturalist, 166, E95-E114. https://doi.org/10.1086/444403

Toosi, N. B., Soffianian, A. R., Fakheran, S., Pourmanafi, S., Ginzler, C., & Waser, L. T. (2019). Comparing different classification algorithms for monitoring mangrove cover changes in southern Iran. Global Ecology and Conservation, 19, e00662. https://doi.org/10.1016/j.gecco.2019.e00662

Traganos, D., Aggarwal, B., Poursanidis, D., Topouzelis, K., Chrysoulakis, N., & Reinartz, P. (2018). Towards global-scale seagrass mapping and monitoring using Sentinel-2 on Google Earth Engine: The case study of the aegean and ionian seas. Remote Sensing, 10(8), 1227. https://doi.org/10.3390/rs10081227

Verburg, P. H., Kok, K., Pontius, R. G. Jr., & Veldkamp, A. (2006). Modeling land-use and land-cover change. In E. F. Lambin & H. Geist (Eds.), Land-use and land-cover change: Local processes and global impacts (pp. 117–135). Springer. https://doi.org/10.1007/3-540-32202-7_5

Wahap, N., & Shafri, H. Z. (2020). Utilization of Google Earth Engine (GEE) for land cover monitoring over Klang Valley, Malaysia. In Proceedings of the IOP Conference Series: Earth and Environmental Science (Vol. 540, p. 012003). IOP Publishing. https://doi.org/10.1088/1755-1315/540/1/012003

Walker, R. (2004). Theorizing land-cover and land-use change: the case of tropical deforestation. International Regional Science Review, 27(3), 247–270. https://doi.org/10.1177/0160017604266026

Wang, Z., Lai, C., Chen, X., Yang, B., Zhao, S., & Bai, X. (2015). Flood hazard risk assessment model based on random forest. Journal of Hydrology, 527, 1130–1141. https://doi.org/10.1016/j.jhydrol.2015.06.008

White, F. (1983). The vegetation of Africa: A descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. Unesco.

Xiong, J., Thenkabail, P. S., Tilton, J. C., Gumma, M. K., Teluguntla, P., Oliphant, A., Congalton, R. G., Yadav, K., & Gorelick, N. (2017). Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth Engine. Remote Sensing, 9(10), 1065. https://doi.org/10.3390/rs9101065

Zeferino, L. B., de Souza, L. F. T., do Amaral, C. H., Fernandes Filho, E. I., & de Oliveira, T. S. (2020). Does environmental data increase the accuracy of land use and land cover classification? International Journal of Applied Earth Observation and Geoinformation, 91, 102128. https://doi.org/10.1016/j.jag.2020.102128

Zhu, Z., Gallant, A. L., Woodcock, C. E., Pengra, B., Olofsson, P., Loveland, T. R., Jin, S., Dahal, D., Yang, L., & Auch, R. F. (2016). Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative. ISPRS Journal of Photogrammetry and Remote Sensing, 122, 206–221. https://doi.org/10.1016/j.isprsjprs.2016.11.004