Share:


Rational control by temperature in vortex energy separator under destabilizing effects

    Anatoly Kulik Affiliation
    ; Kostiantyn Dergachov Affiliation
    ; Sergiy Pasichnik Affiliation
    ; Dmytro Sokol Affiliation

Abstract

The focus of this study is the arrangement of a rational control technique used to maintain the airflow temperature in a vortex energy separator (VES) under destabilizing effects. The objectives include the development of tools for the rational control of temperature in the cold and hot air flows of a VES. Methods used: Discrete state space, production rule statement, resolution of two-valued predicate equations, dichotomous trees, diagnosis, and recovery of dynamic objects. Problems settled: the studied features of the vortex energy separation process, architecture, and operation links of the rational control system were considered, mathematical models were deduced, and tools for diagnosing and recovering the efficiency of the vortex energy separator as a rational control object were developed. The scientific novelty of the study lies in the formation of instrumental tools to provide rational control of the airflow condition in the VES, where the control object is subjected to the substantial influence of various destabilizing effects.

Keyword : vortex energy separator, rational control, destabilizing effects, linear mathematical models, diagnosing, performance recovery

How to Cite
Kulik, A., Dergachov, K., Pasichnik, S., & Sokol, D. (2023). Rational control by temperature in vortex energy separator under destabilizing effects. Aviation, 27(4), 234–241. https://doi.org/10.3846/aviation.2023.20229
Published in Issue
Nov 24, 2023
Abstract Views
244
PDF Downloads
331
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Arslan, S., Mitrovic, B., & Muller, M. R. (2002). Vortex tube applications in micro-power generation. In International Joint Power Generation Conference. Scottdale, Arizona, USA. https://doi.org/10.1115/IJPGC2002-26056

Barbonov, E. O., Biryuk, V. V., Gajnullin, M. N., Sotova, V. A., & Chertykovtsev, P. A. (2017). The hybrid cooling system of onboard infrared detectors on the basis of vortex and thermoelectric effects. Vestnik mezhdunarodnoi akademii kholoda, 2017(2), 31–37. https://doi.org/10.21047/1606-4313-2017-16-2-31-37

Bazgir, A., & Nabhani, N. (2018). Numerical investigation of the effects of geometrical parameters on the vortex separation phenomenon inside a Ranque-Hilsch vortex tube used as an air separator in a helicopter’s engine. Aviation, 22(1), 13–23. https://doi.org/10.3846/aviation.2018.2414

Beaugendre, E., Lagrandeur, J., Cheayb, M., & Poncet, S. (2021). Integration of vortex tubes in a trigenerative compressed air energy storage system. Energy Conversion and Management, 240, 114225. https://doi.org/10.1016/j.enconman.2021.114225

Belov, G. O., Dostovalova, S. S., Barbanov, E. O., Uglanov, D. A., Chertykovtsev, P. A., & Panshin, R. A. (2018). The Vortex aircooler system for cutting materials in aerospace industry. MATEC Web Conferences, 179, 02007. https://doi.org/10.1051/matecconf/201817902007

Biryuk, V. V., Lukachev, S. V., Volov, V. T., & Pirallishvili, Sh. A. (2021). Professor Merkulov role in the process of research and development of the vortex effect. Vestnik of Samara University. Aerospace and Mechanical Engineering, 20(2), 105–121. https://doi.org/10.18287/2541-7533-2021-20-2-105-121

Dumakor-Dupey, N. K. (2021). Application of vortex tubes in an underground mine ventilation system. University of Alaska.

Khalatov, A. A., & Nam, Ch.-D. (2004). Aerothermal vortex technologies in aerospace engineering. Journal of the Korean Society of Marine Engineers, 28(2), 163–184.

Kim, Y., Im, S., & Han, J. (2020). A study on the application possibility of the vehicle air conditioning system using vortex tube. Energies, 13(19), 5227. https://doi.org/10.3390/en13195227

Kulik, A. S. (2016). Elementyi teorii ratsionalnogo upravleniya ob‘ektami. National Aerospace University “Kharkiv Aviation Institute” (in Russian).

Kulik, A., Dergachov, K., Pasichnik, S., & Sokol, D. (2022a). Rational control of the temperature of vortex energy separator under destabilizing influence. Radioelectronic and Computer Systems, (3), 47–66. https://doi.org/10.32620/reks.2022.3.04

Kulik, A., Dergachov, K., Pasichnik, S., & Sokol, D. (2022b). Diagnostic models of inoperable states of the vortex energy separator device. Aerospace Technic and Technology, (3), 13–29. https://doi.org/10.32620/aktt.2022.3.02

Kulik, A. S., Pasichnik, S. N., & Sokol, D. V. (2021). Modeling of physical processes of energy conversion in small-sized vortex energy separators. Aerospace Technic and Technology, (1), 20–30. https://doi.org/10.32620/aktt.2021.1.03

Lagrandeur, J., Uzundurukan, A., Mansour, A., Poncet, S., & Benard, P. (2023). On the benefit of integrating vortex tubes in PEMFC system for preheating hydrogen in FCEV technologies. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.11.246

Leachman, J., Matveev, K., McMahon, J., Eldrid, S., Bunge, C., Wallace, G., Attapattu, J., & Combs, S. (2020). Heisenberg vortex tube for cooling and liquefaction. Washington State University.

Merkulov, A. P. (1992). Vihrevoy effekt i ego primenenie v tehnike. Optima (in Russian).

Nellis, G. F., & Klein, S. A. (2002). The application of vortex tubes to refrigeration cycles. In International Refrigeration and Air Conditioning Conference (paper 537). Purdue University.

Piralishvili, Sh. A., Veretennikov, S. V., Piralishvili, G. Sh., & Vasilyuk, O. V. (2017). Analiz teplofizicheskih protsessov v vihrevyih trubah. Vestnik PNIPU. Aerokosmicheskaya tekhnika, (49), 127–141 (in Russian).