Share:


Experimental study of physical-chemical properties of advanced alcohol-to-jet fuels

    Anna Yakovlieva   Affiliation
    ; Sergii Boichenko   Affiliation
    ; Vasyl Boshkov   Affiliation
    ; Lukaš Korba Affiliation
    ; Marián Hocko Affiliation

Abstract

The paper presents an analytical review of technological processes of alternative jet fuel production from alcohols and experimental results on the study of its physical-chemical properties. State-of-the-art in the sphere of civil aviation development within the framework of sustainable development and minimization of transport’s negative impact on the environment is presented. The development and implementation of sustainable aviation fuels are considered the main measure for reaching carbon-neutral growth. Two technologies of alcohol-to-jet fuel production are considered, and possible feedstock and processing pathways are presented. Physical-chemical properties of two kinds of alcohol-to-jet fuels are studied experimentally, as well as the properties of conventional jet fuels blended with alternative ones. It is shown that the physical-chemical properties of jet fuels blended with alcohol-to-jet component containing aromatics are very close to conventional jet fuels. All of the studied fuel blends with alcohol-to-jet components completely satisfy the requirements of specifications. Basing on the received results it is expected that alcohol-to-jet component containing aromatics may be successfully used for blending with conventional jet fuel and used as a drop-in fuel.

Keyword : jet fuel, sustainable aviation fuel, alcohol-to-jet, synthesized paraffinic kerosene, synthesized kerosene with aromatics, technological process, physical-chemical properties

How to Cite
Yakovlieva, A., Boichenko, S., Boshkov, V., Korba, L., & Hocko, M. (2023). Experimental study of physical-chemical properties of advanced alcohol-to-jet fuels. Aviation, 27(1), 1–13. https://doi.org/10.3846/aviation.2023.18564
Published in Issue
Feb 23, 2023
Abstract Views
989
PDF Downloads
761
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Achinas, S., Margry, S., & Euverink, G. J. W. (2021). A technological outlook of biokerosene production. In Applied biotechnology reviews, sustainable biofuels (pp. 225–246). Academic Press. https://doi.org/10.1016/B978-0-12-820297-5.00011-6

American Society for Testing and Materials. (2015a). Test Method for Distillation of Petroleum Products at Atmospheric Pressure (ASTM D86-15). ASTM.

American Society for Testing and Materials. (2015b). Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity) (ASTM D445-15a). ASTM.

American Society for Testing and Materials. (2011a). Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives (ASTM D4054-09 S). ASTM.

American Society for Testing and Materials. (2011b). Standard Specification for Aviation Turbine Fuels (ASTM D1655-11b). ASTM.

American Society for Testing and Materials. (2011c). Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons (ASTM D7655-11a). ASTM.

American Society for Testing and Materials. (2016). Test Methods for Flash Point by Pensky-Martens Closed Cup Tester (ASTM D93-16). ASTM.

American Society for Testing and Materials. (2009). Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter (ASTM D4052-15). ASTM.

Anuar, A., Undavalli, V. K., Khandelwal, B., & Blakey, S. (2021). Effect of fuels, aromatics and preparation methods on seal swell. The Aeronautical Journal, 125(1291), 1542–1565. https://doi.org/10.1017/aer.2021.25

Bann, S. J., Malina, R., Staples, M. D., Suresh, P., Pearlson, M., Tyner, W. E., Hileman, J. I., & Barrett, S. (2017). The costs of production of alternative jet fuel: A harmonized stochastic assessment. Bioresource Technology, 227, 179–187. https://doi.org/10.1016/j.biortech.2016.12.032

Boichenko, S., & Yakovlieva, A. (2020). Energy efficient renewable feedstock for alternative motor fuels production: Solutions for Ukraine. In V. Babak, V. Isaienko, & A. Zaporozhets (Eds.), Systems, decision and control in energy I (pp. 247–259). Springer. https://doi.org/10.1007/978-3-030-48583-2_16

Boichenko, S., Zubenko, S., Konovalov, S., & Yakovlieva, A. (2020). Synthesis of Camelina oil ethyl esters as components of jet fuels. Eastern-European Journal of Enterprise Technologies, 1(6(103), 42–49. https://doi.org/10.15587/1729-4061.2020.196947

Brooks, K. P., Snowden-Swan, L. J., Jones, S. B., Butcher, M. G., Lee, G.-S. J., Anderson, D. M., Frye, J. G., Holladay, J. E., Owen, J., Harmon, L., Burton, F., Palou-Rivera, I., Plaza, J., Handler, R., & Shonnard, D. (2016). Low-carbon aviation fuel through the alcohol to jet pathway. In Ch. J. Chuck (Ed.), Biofuels for aviation (pp. 109–150). Academic Press. https://doi.org/10.1016/B978-0-12-804568-8.00006-8

Cecere, D., Giacomazzi, E., & Ingenito, A. (2014). A review on hydrogen industrial aerospace applications. International Journal of Hydrogen Energy, 39(20), 10731–10747. https://doi.org/10.1016/j.ijhydene.2014.04.126

Commercial Aviation Alternative Fuels Initiative. (2022, May 6). Fuel qualification. https://www.caafi.org/focus_areas/fuel_qualification.html

De Klerk, A. (2016). Aviation turbine fuels through the Fischer–Tropsch process. In Ch. J. Chuck (Ed.), Biofuels for aviation (pp. 241–259). Academic Press. https://doi.org/10.1016/B978-0-12-804568-8.00010-X

Dessens, O., Köhler, M. O., Rogers, H. L., Jones, R. L., & Pyle, J. A. (2014). Aviation and climate change. Transport Policy, 34, 14–20. https://doi.org/10.1016/j.tranpol.2014.02.014

Fu, C., Li, Z., Jia, C., Zhang, W., Zhang, Y., Yi, C., & Xie, S. (2021). Recent advances on bio-based isobutanol separation. Energy Conversion and Management: X, 10, 100059. https://doi.org/10.1016/j.ecmx.2020.100059

Geleynse, S., Brandt, K., Garcia-Perez, M., Wolcott, M., & Zhang, X. (2018) the alcohol-to-jet conversion pathway for drop-in biofuels: Techno-economic evaluation. ChemSusChem, 11(21), 3728. https://doi.org/10.1002/cssc.201801690

Governmental Standard. (2018). Motor fuels. Methods for measuring could point and freezing point (GOST 5066-2018 (ISO 3013-74)). GOST.

Gnansounou, E., & Dauriat, A. (2010). Techno-economic analysis of lignocellulosic ethanol: A review. Bioresources and Technology, 101(13), 4980–4991. https://doi.org/10.1016/j.biortech.2010.02.009

Han, G. B., Jang, J. H., Ahn. M. H., & Jung, B. H. (2019). Recent application of bio-alcohol: bio-jet fuel. In Alcohol fuels – current technologies and future prospect (pp. 1–14). IntechOpen.

Iakovlieva, A., Vovk, O., Boichenko, S., Lejda, K., & Kuszewski, H. (2016). Physical-chemical properties of jet fuel blends with components derived from rapeseed oil. Chemistry and Chemical Technology, 10(4), 485–492. https://doi.org/10.23939/chcht10.04.485

Konovalov, S., Patrylak, L., Zubenko, S., Okhrimenko, M., Yakovenko, A., Levterov, A., & Avramenko, A. (2021). Alkali synthesis of fatty acid butyl and ethyl esters and comparative bench motor testing of blended fuels on their basis. Chemistry and Chemical Technology, 15(1), 105–117. https://doi.org/10.23939/chcht15.01.105

Kulik, N. S., Aksenov A. F., Yanovskii L. S., Boichenko S. V., & Zaporozhets A. I. (2015). Aviation chemmotology: Fuels for jet engines. In Theoretical and engineering fundamentals of use. NAU. (in Russian)

Kurdel, P., Češkovič, M., Gecejová, N., Adamčík, F., & Gamcová, M. (2022). Local control of unmanned air vehicles in the mountain area. Drones, 6, 54. https://doi.org/10.3390/drones6020054

Lakshmi, N. M., Binod, P., Sindhu, R., Awasthic, M. K., & Pandey, A. (2021). Microbial engineering for the production of isobutanol: Current status and future directions. Bioengineered, 12(2), 12308–12321. https://doi.org/10.1080/21655979.2021.1978189

Lee, D. S., Fahey, D. W., Forster, P. M., Newton, P. J., Wit, R. C., Lim, L. L., Owen, B., & Sausen, R. (2009). Aviation and global climate change in the 21st century. Atmospheric Environment, 43(22–23), 3520–3537. https://doi.org/10.1016/j.atmosenv.2009.04.024

Lei, H., & Khandelwal, B. (2021). Hydrogen fuel for aviation. In Aviation fuels (pp. 237–270). Academic Press. https://doi.org/10.1016/B978-0-12-818314-4.00007-8

Lew, L., & Biddle, T. (2014). Evaluation of ARA Catalytic Hydrothermolysis (CH) Fuel (Final Report FR-27652-2a). Pratt & Whitney.

Li, L., Coppola, E., Rine, J., Miller, J. L., & Walker, D. (2010). Catalytic hydrothermal conversion of triglycerides to non-ester biofuels. Energy Fuels, 24(2), 1305–1315. https://doi.org/10.1021/ef901163a

Neuling, U., & Kaltschmitt, M. (2018). Biokerosene from vegetable oils – technologies and processes. In Biokerosene (pp. 475–496). Springer-Verlag. https://doi.org/10.1007/978-3-662-53065-8_19

Panchuk, M., Kryshtopa, S., & Panchuk, A. (2020). Innovative technologies for the creation of a new sustainable, environmentally neutral energy production in Ukraine. In International Conference on Decision Aid Sciences and Application, DASA 2020 (pp. 732–737). IEEE. https://doi.org/10.1109/DASA51403.2020.9317165

Petrescu, R. V. V., Machín, A., Fontánez, K., Arango, J. C., Márquez, F. M., & Petrescu, F. I. T. (2020). Hydrogen for aircraft power and propulsion. International Journal of Hydrogen Energy, 45(41), 20740–20764. https://doi.org/10.1016/j.ijhydene.2020.05.253

Pires, A., Han, Y., Kramlich, J., & Garcia-Perez, M. (2018). Chemical composition and fuel properties of alternative jet fuels. BioResources, 13(2), 2632–2657. https://doi.org/10.15376/biores.13.2.2632-2657

Rahmes, T. F., Kinder, J. D., Henry, T. M., Crenfeldt, G., LeDuc, G. F., Zombanakis, G. P., Abe, Y., Lambert, D. M., Lewis, C., & Juenger, J. A. (2009). Sustainable bio-derived synthetic paraffinic kerosene (Bio-SPK) jet fuel flights and engine tests program results (Report No AIAA). Aerospace Research Central. https://doi.org/10.2514/6.2009-7002

Ratner, S. V., Yuri, C., & Hien, N. H. (2019). Prospects of transition of air transportation to clean fuels: Economic and environmental management aspects. International Energy Journal, 19(3).

Seber, G., Malina, R., Pearlson, M. N., Olcay, H., Hileman, J. I., & Barrett, S. R. H. (2014). Environmental and economic assessment of producing hydroprocessed jet and diesel fuel from waste oils and tallow. Biomass and Bioenergy, 67, 108–118. https://doi.org/10.1016/j.biombioe.2014.04.024

Silveira, M. H. L., Vanelli, B. A., & Chandel, A. K. (2018). Second generation ethanol production: Potential biomass feedstock, biomass deconstruction, and chemical platforms for process valorization. In Advances in sugarcane biorefinery (pp. 135–152). Elsevier. https://doi.org/10.1016/B978-0-12-804534-3.00006-9

Stephen, J. L., & Periyasamy, B. (2018). Innovative developments in biofuels production from organic waste materials: A review. Fuel, 214, 623–633. https://doi.org/10.1016/j.fuel.2017.11.042

Van Dyk, S., & Saddler, J. (2021). Progress in commercialization of biojet/Sustainable Aviation Fuels (SAF): Technologies, potential and challenges. In IEA Bioenergy Task 39. Technology Collaboration Programme.

Wang, W.-Ch., Tao, L., Markham, J., Zhang, Y., Tan, E., Batan, L., Warner, E., & Biddy, M. (2016). Review of biojet fuel conversion technologies (Technical Report NREL/TP-5100-66291). National Renewable Energy Laboratory. https://doi.org/10.2172/1278318

Yakovlieva, A., Boichenko, S., Lejda, K., & Vovk, O. (2019a). Modification of jet fuels composition with renewable bio-additives. Center for education literature.

Yakovlieva, A., Boichenko, S., & Zaremba J. (2019b, 28–29 November). Improvement of air transport environmental safety by implementing alternative jet fuels. In Modern Safety Technologies in Transportation (MOSATT) (pp. 146–151). Kosice. https://doi.org/10.1109/MOSATT48908.2019.8944122

Yamada, R., Taniguchi, N., Tanaka, T., Ogino, C., Fukuda, H., & Kondo, A. (2011). Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnology for Biofuels, 4, 8. https://doi.org/10.1186/1754-6834-4-8

Yao, G., Staples, M. D., Malina, R., & Tyner, W. E. (2017). Stochastic techno-economic analysis of alcohol-to-jet fuel production. Biotechnology for Biofuels and Bioproducts, 10, 18. https://doi.org/10.1186/s13068-017-0702-7

Zschocke, A., Scheuermann, S., & Ortner, J. (2012). High Biofuel Blends in Aviation (HBBA) (Final Report ENER/C2/2012/ 420-1). Deutsche Lufthansa AG & Wehrwissenschaftliches Institut für Werk- und Betriebsstoffe.